Reference-Free Axial Super-Resolution of 3D Microscopy Images Using Implicit Neural Representation with a 2D Diffusion Prior

被引:0
|
作者
Lee, Kyungryun [1 ]
Jeong, Won-Ki [1 ]
机构
[1] Korea Univ, Dept Comp Sci & Engn, Coll Informat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Implicit neural representation; Isotropic reconstruction; Diffusion models;
D O I
10.1007/978-3-031-72104-5_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis and visualization of 3D microscopy images pose challenges due to anisotropic axial resolution, demanding volumetric super-resolution along the axial direction. While training a learning-based 3D super-resolution model seems to be a straightforward solution, it requires ground truth isotropic volumes and suffers from the curse of dimensionality. Therefore, existing methods utilize 2D neural networks to reconstruct each axial slice, eventually piecing together the entire volume. However, reconstructing each slice in the pixel domain fails to give consistent reconstruction in all directions leading to misalignment artifacts. In this work, we present a reconstruction framework based on implicit neural representation (INR), which allows 3D coherency even when optimized by independent axial slices in a batch-wise manner. Our method optimizes a continuous volumetric representation from low-resolution axial slices, using a 2D diffusion prior trained on high-resolution lateral slices without requiring isotropic volumes. Through experiments on real and synthetic anisotropic microscopy images, we demonstrate that our method surpasses other state-of-the-art reconstruction methods. The source code is available on GitHub: https://github.com/hvcl/INR-diffusion.
引用
收藏
页码:593 / 602
页数:10
相关论文
共 50 条
  • [31] Exploring the Relationship Between 2D/3D Convolution for Hyperspectral Image Super-Resolution
    Li, Qiang
    Wang, Qi
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8693 - 8703
  • [32] Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network
    Du, Jinglong
    He, Zhongshi
    Wang, Lulu
    Gholipour, Ali
    Zhou, Zexun
    Chen, Dingding
    Jia, Yuanyuan
    NEUROCOMPUTING, 2020, 392 : 209 - 220
  • [33] Super-resolution 3D microscopy of live whole cells using structured illumination
    Lin Shao
    Peter Kner
    E Hesper Rego
    Mats G L Gustafsson
    Nature Methods, 2011, 8 : 1044 - 1046
  • [34] Super-resolution 3D microscopy of live whole cells using structured illumination
    Shao, Lin
    Kner, Peter
    Rego, E. Hesper
    Gustafsson, Mats G. L.
    NATURE METHODS, 2011, 8 (12) : 1044 - +
  • [35] A Comparison of Neural Network-Based Super-Resolution Models on 3D Rendered Images
    Berral-Soler, Rafael
    Madrid-Cuevas, Francisco J.
    Ventura, Sebastian
    Munoz-Salinas, Rafael
    Marin-Jimenez, Manuel J.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2023, PT I, 2023, 14184 : 45 - 55
  • [36] Photoactivatable Quantum Dots in Super-Resolution 3D Microscopy of Myofibrils
    Root, Douglas D.
    Gopal, Tejas
    Luchowski, Rafal
    Akel, Amal
    Gryczynski, Zygmunt
    Borejdo, Julian
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 212A - 212A
  • [37] Super-resolution of 3D Magnetic Resonance Images by Random Shifting and Convolutional Neural Networks
    Thurnhofer-Hemsi, Karl
    Lopez-Rubio, Ezequiel
    Roe-Vellve, Nuria
    Dominguez, Enrique
    Molina-Cabello, Miguel A.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [38] Clean localization super-resolution microscopy for 3D biological imaging
    Mondal, Partha P.
    Curthoys, Nikki M.
    Hess, Samuel T.
    AIP ADVANCES, 2016, 6 (01):
  • [39] Stereo Photoactivated Localization Microscopy for Super-Resolution 3D Bioimaging
    Tang, Jianyong
    Vaziri, Alipasha
    Shank, Charles V.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 16A - 16A
  • [40] Matching 3D OCT Retina Images into Super-Resolution Dataset
    Stankiewicz, Agnieszka
    Marciniak, Tomasz
    Dabrowski, Adam
    Stopa, Marcin
    Marciniak, Elzbieta
    Michalski, Andrzej
    2016 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2016, : 130 - 137