Characterizing and Optimizing the End-to-End Performance of Multi-Agent Reinforcement Learning Systems

被引:0
|
作者
Gogineni, Kailash [1 ]
Mei, Yongsheng [1 ]
Gogineni, Karthikeya
Wei, Peng [1 ]
Lan, Tian [1 ]
Venkataramani, Guru [1 ]
机构
[1] George Washington Univ, Washington, DC 20052 USA
基金
美国国家科学基金会;
关键词
Multi-Agent Systems; Performance Analysis; Reinforcement Learning; Performance Optimization;
D O I
10.1109/IISWC63097.2024.00028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multi-Agent Reinforcement Learning Systems (MARL) can unlock the potential to model and control multiple autonomous decision-making agents simultaneously. During online training, MARL algorithms involve performance-intensive computations, such as exploration and exploitation phases originating from a large observation-action space and a huge number of training steps. Understanding and mitigating the MARL performance limiters is key to their practical adoption. In this paper, we first present a detailed workload characterization of MARL workloads under different multi-agent settings. Our experimental analysis identifies a critical performance bottleneck that affects scaling within the mini-batch sampling on transition data. To mitigate this issue, we explore a series of optimization strategies. First, we investigate cache locality-aware sampling that prioritizes intra-agent neighbor transitions over other randomly picked transition data samples within the baseline MARL algorithms. Next, we explore importance sampling techniques that preserve the learning performance/distribution and capture the neighbors of important transitions. Finally, we design an additional algorithmic optimization that reorganizes the transition data layout to improve the cache locality between different agents during the mini-batch sampling process. We evaluate our optimizations using popular MARL workloads on multi-agent particle games. Our work highlights several opportunities for enhancing the performance of multi-agent systems, with end-to-end training time improvements ranging from 8.2% (3 agents) to 20.5% (24 agents) compared to the baseline MADDPG, affirming the usefulness of deeply understanding MARL performance bottlenecks and mitigating them effectively.
引用
收藏
页码:224 / 235
页数:12
相关论文
共 50 条
  • [31] Reinforcement learning of coordination in cooperative multi-agent systems
    Kapetanakis, S
    Kudenko, D
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 326 - 331
  • [32] Multi-Agent Reinforcement Learning in Stochastic Networked Systems
    Lin, Yiheng
    Qu, Guannan
    Huang, Longbo
    Wierman, Adam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [33] TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
    Chen, Tianqi
    Moreau, Thierry
    Jiang, Ziheng
    Zheng, Lianmin
    Yan, Eddie
    Cowan, Meghan
    Shen, Haichen
    Wang, Leyuan
    Hu, Yuwei
    Ceze, Luis
    Guestrin, Carlos
    Krishnamurthy, Arvind
    PROCEEDINGS OF THE 13TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, 2018, : 579 - 594
  • [34] End-to-End Hierarchical Reinforcement Learning With Integrated Subgoal Discovery
    Pateria, Shubham
    Subagdja, Budhitama
    Tan, Ah-Hwee
    Quek, Chai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7778 - 7790
  • [35] End-to-End Reinforcement Learning for Self-driving Car
    Chopra, Rohan
    Roy, Sanjiban Sekhar
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 53 - 61
  • [36] OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
    Liu, Qiang
    Choi, Nakjung
    Han, Tao
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON EMERGING NETWORKING EXPERIMENTS AND TECHNOLOGIES, CONEXT 2021, 2021, : 141 - 153
  • [37] End-to-end multimodal image registration via reinforcement learning
    Hu, Jing
    Luo, Ziwei
    Wang, Xin
    Sun, Shanhui
    Yin, Youbing
    Cao, Kunlin
    Song, Qi
    Lyu, Siwei
    Wu, Xi
    MEDICAL IMAGE ANALYSIS, 2021, 68
  • [38] End-to-End Robotic Reinforcement Learning without Reward Engineering
    Singh, Avi
    Yang, Larry
    Hartikainen, Kristian
    Finn, Chelsea
    Levine, Sergey
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [39] CrowdRL: An End-to-End Reinforcement Learning Framework for Data Labelling
    Li, Kaiyu
    Li, Guoliang
    Wang, Yong
    Huang, Yan
    Liu, Zitao
    Wu, Zhongqin
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 289 - 300
  • [40] End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
    Zhang, Zhejun
    Liniger, Alexander
    Dai, Dengxin
    Yu, Fisher
    Van Gool, Luc
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15202 - 15212