Deep Learning Applications in Ionospheric Modeling: Progress, Challenges, and Opportunities

被引:2
|
作者
Zhang, Renzhong [1 ]
Li, Haorui [1 ]
Shen, Yunxiao [1 ]
Yang, Jiayi [1 ]
Li, Wang [1 ,2 ]
Zhao, Dongsheng [3 ]
Hu, Andong [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming 650093, Peoples R China
[2] Yunnan Prov Key Lab Intelligent Monitoring Nat Res, Kunming 650093, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Peoples R China
[4] CU Boulder, Cooperat Inst Res Environm Sci CIRES, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
ionospheric model; deep learning; space weather monitoring; natural disaster early warning; navigation and positioning; NEURAL-NETWORKS; REAL-TIME; DELAY CORRECTION; ELECTRON-CONTENT; PREDICTION; GPS; TEC; EARTHQUAKE; ALGORITHM;
D O I
10.3390/rs17010124
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the continuous advancement of deep learning algorithms and the rapid growth of computational resources, deep learning technology has undergone numerous milestone developments, evolving from simple BP neural networks into more complex and powerful network models such as CNNs, LSTMs, RNNs, and GANs. In recent years, the application of deep learning technology in ionospheric modeling has achieved breakthrough advancements, significantly impacting navigation, communication, and space weather forecasting. Nevertheless, due to limitations in observational networks and the dynamic complexity of the ionosphere, deep learning-based ionospheric models still face challenges in terms of accuracy, resolution, and interpretability. This paper systematically reviews the development of deep learning applications in ionospheric modeling, summarizing findings that demonstrate how integrating multi-source data and employing multi-model ensemble strategies has substantially improved the stability of spatiotemporal predictions, especially in handling complex space weather events. Additionally, this study explores the potential of deep learning in ionospheric modeling for the early warning of geological hazards such as earthquakes, volcanic eruptions, and tsunamis, offering new insights for constructing ionospheric-geological activity warning models. Looking ahead, research will focus on developing hybrid models that integrate physical modeling with deep learning, exploring adaptive learning algorithms and multi-modal data fusion techniques to enhance long-term predictive capabilities, particularly in addressing the impact of climate change on the ionosphere. Overall, deep learning provides a powerful tool for ionospheric modeling and indicates promising prospects for its application in early warning systems and future research.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Modeling carbon storage in urban vegetation: Progress, challenges, and opportunities
    Zhuang, Qingwei
    Shao, Zhenfeng
    Gong, Jianya
    Li, Deren
    Huang, Xiao
    Zhang, Ya
    Xu, Xiaodi
    Dang, Chaoya
    Chen, Jinlong
    Altan, Orhan
    Wu, Shixin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114
  • [32] Modeling a 3D World - Challenges, Progress and Opportunities
    Belayneh, Tamrat
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840
  • [33] Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities
    Qiu, Xueying
    Zhang, Yin
    Zhu, Yanfei
    Long, Chang
    Su, Lina
    Liu, Shaoqin
    Tang, Zhiyong
    ADVANCED MATERIALS, 2021, 33 (06)
  • [34] Challenges and Opportunities in Deep Reinforcement Learning With Graph Neural Networks: A Comprehensive Review of Algorithms and Applications
    Munikoti, Sai
    Agarwal, Deepesh
    Das, Laya
    Halappanavar, Mahantesh
    Natarajan, Balasubramaniam
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15051 - 15071
  • [35] Challenges and Opportunities in Deep Reinforcement Learning With Graph Neural Networks: A Comprehensive Review of Algorithms and Applications
    Munikoti, Sai
    Agarwal, Deepesh
    Das, Laya
    Halappanavar, Mahantesh
    Natarajan, Balasubramaniam
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15051 - 15071
  • [36] Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities
    Rahman, Anichur
    Debnath, Tanoy
    Kundu, Dipanjali
    Khan, Md. Saikat Islam
    Aishi, Airin Afroj
    Sazzad, Sadia
    Sayduzzaman, Mohammad
    Band, Shahab S.
    AIMS PUBLIC HEALTH, 2024, 11 (01): : 58 - 109
  • [37] Deep Learning for Wireless Physical Layer: Opportunities and Challenges
    Tianqi Wang
    Chao-Kai Wen
    Hanqing Wang
    Feifei Gao
    Tao Jiang
    Shi Jin
    中国通信, 2017, 14 (11) : 92 - 111
  • [38] Opportunities and challenges for deep learning in cell dynamics research
    Chai, Binghao
    Efstathiou, Christoforos
    Yue, Haoran
    Draviam, Viji M.
    TRENDS IN CELL BIOLOGY, 2024, 34 (11) : 955 - 967
  • [39] Deep Learning for Anomaly Detection: Challenges, Methods, and Opportunities
    Pang, Guansong
    Cao, Longbing
    Aggarwal, Charu
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1127 - 1130
  • [40] Deep learning for intelligent IoT: Opportunities, challenges and solutions
    Bin Zikria, Yousaf
    Afzal, Muhammad Khalil
    Kim, Sung Won
    Marin, Andrea
    Guizani, Mohsen
    COMPUTER COMMUNICATIONS, 2020, 164 : 50 - 53