Intrinsic Gene Expression Correlates of the Biophysically Modeled Diffusion Magnetic Resonance Imaging Signal

被引:0
|
作者
Singh, Ajay P. [1 ]
Fromandi, Michael [2 ]
Pimentel-Alarcon, Daniel [3 ]
Werling, Donna M. [4 ,5 ]
Gasch, Audrey P. [5 ,6 ]
Yu, John-Paul J. [2 ,7 ,8 ]
机构
[1] Univ Wisconsin, Grad Program Cellular & Mol Biol, Madison, WI USA
[2] Univ Wisconsin, Sch Med & Publ Hlth, Dept Radiol, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Radiol, Madison, WI USA
[4] Univ Wisconsin, Waisman Ctr, Madison, WI USA
[5] Univ Wisconsin, Lab Genet, Madison, WI USA
[6] Univ Wisconsin, Ctr Genom Sci Innovat, Madison, WI USA
[7] Univ Wisconsin, Dept Biomed Engn, Madison, WI 53706 USA
[8] Univ Wisconsin, Dept Psychiat, Sch Med & Publ Hlth, Madison, WI 53706 USA
来源
关键词
IN-VIVO; FRAMEWORK; ATLAS;
D O I
10.1016/j.bpsgos.2024.100430
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetic resonance imaging (MRI) is a powerful tool to identify the structural and functional correlates of neurological illness but provides limited insight into molecular neurobiology. Using rat genetic models of autism spectrum disorder, we show that image texture-processed neurite orientation dispersion and density imaging (NODDI) diffusion MRI possesses an intrinsic relationship with gene expression that corresponds to the biophysically modeled cellular compartments of the NODDI diffusion signal. Specifically, we demonstrate that neurite density index and orientation dispersion index signals are correlated with intracellular and extracellular gene expression, respectively. Moreover, we further demonstrate that these imaging signals correlate with genes specifically relevant to the etiopathogenesis of autism spectrum disorder. In sum, our data suggest fundamental relationships between gene expression and diffusion MRI, implicating the potential of diffusion MRI to probe causal neurobiological mechanisms in neuroimaging phenotypes in autism spectrum disorder.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Diffusion and utilization of magnetic resonance imaging in Asia
    Hutubessy, RCW
    Hanvoravongchai, P
    Edejer, TTT
    INTERNATIONAL JOURNAL OF TECHNOLOGY ASSESSMENT IN HEALTH CARE, 2002, 18 (03) : 690 - 704
  • [42] Diffusion magnetic resonance imaging of chest tumors
    Razek, A. A. K. Abdel
    CANCER IMAGING, 2012, 12 (03): : 452 - 463
  • [43] Magnetic resonance tractography with diffusion tensor imaging
    Zhou, XJ
    Leeds, NE
    Karmonik, C
    Mock, BJ
    RADIOLOGY, 1999, 213P : 232 - 233
  • [44] INVIVO MAGNETIC-RESONANCE IMAGING OF DIFFUSION
    LEBIHAN, D
    BRETON, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (15): : 1109 - 1112
  • [45] Diffusion processes modeling in magnetic resonance imaging
    Morozov, Sergey
    Sergunova, Kristina
    Petraikin, Alexey
    Akhmad, Ekaterina
    Kivasev, Stanislav
    Semenov, Dmitry
    Blokhin, Ivan
    Karpov, Igor
    Vladzymyrskyy, Anton
    Morozov, Alexander
    INSIGHTS INTO IMAGING, 2020, 11 (01)
  • [46] Diffusion weighted magnetic resonance imaging in stroke
    Roberts, TPL
    Rowley, HA
    EUROPEAN JOURNAL OF RADIOLOGY, 2003, 45 (03) : 185 - 194
  • [47] Diffusion magnetic resonance imaging in multiple sclerosis
    Horsfield, MA
    Larsson, HBW
    Jones, DK
    Gass, A
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1998, 64 : S80 - S84
  • [48] DIFFUSION POSTERIOR SAMPLING FOR MAGNETIC RESONANCE IMAGING
    Li, Ji
    Wang, Chao
    INVERSE PROBLEMS AND IMAGING, 2025, 19 (03) : 613 - 631
  • [49] Magnetic resonance imaging studies of diffusion in polymers
    Harding, SG
    Johns, ML
    Pugh, SR
    Fryer, PJ
    Gladden, LF
    FOOD ADDITIVES AND CONTAMINANTS, 1997, 14 (6-7): : 583 - 589
  • [50] Diffusion Magnetic Resonance Imaging in the Head and Neck
    Schafer, James
    Srinivasan, Ashok
    Mukherji, Suresh
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2011, 19 (01) : 55 - +