Multi-Agent Reinforcement Learning is A Sequence Modeling Problem

被引:0
|
作者
Wen, Muning [1 ,2 ]
Kuba, Jakub Grudzien [3 ]
Lin, Runji [4 ]
Zhang, Weinan [1 ]
Wen, Ying [1 ]
Wang, Jun [2 ,5 ]
Yang, Yaodong [6 ,7 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Digital Brain Lab, Berkeley, CA USA
[3] Univ Oxford, Oxford, England
[4] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[5] UCL, London, England
[6] Beijing Inst Gen AI, Beijing, Peoples R China
[7] Peking Univ, Inst AI, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large sequence models (SM) such as GPT series and BERT have displayed outstanding performance and generalization capabilities in natural language process, vision and recently reinforcement learning. A natural follow-up question is how to abstract multi-agent decision making also as an sequence modeling problem and benefit from the prosperous development of the SMs. In this paper, we introduce a novel architecture named Multi-Agent Transformer (MAT) that effectively casts co-operative multi-agent reinforcement learning (MARL) into SM problems wherein the objective is to map agents' observation sequences to agents' optimal action sequences. Our goal is to build the bridge between MARL and SMs so that the modeling power of modern sequence models can be unleashed for MARL. Central to our MAT is an encoder-decoder architecture which leverages the multi-agent advantage decomposition theorem to transform the joint policy search problem into a sequential decision making process; this renders only linear time complexity for multi-agent problems and, most importantly, endows MAT with monotonic performance improvement guarantee. Unlike prior arts such as Decision Transformer fit only pre-collected offline data, MAT is trained by online trial and error from the environment in an on-policy fashion. To validate MAT, we conduct extensive experiments on StarCraftII, Multi-Agent MuJoCo, Dexterous Hands Manipulation, and Google Research Football benchmarks. Results demonstrate that MAT achieves superior performance and data efficiency compared to strong baselines including MAPPO and HAPPO. Furthermore, we demonstrate that MAT is an excellent few-short learner on unseen tasks regardless of changes in the number of agents. See our project page at https://sites.google.com/view/multi-agent-transformer((1)).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [42] Coding for Distributed Multi-Agent Reinforcement Learning
    Wang, Baoqian
    Xie, Junfei
    Atanasov, Nikolay
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10625 - 10631
  • [43] Multi-agent Reinforcement Learning for Service Composition
    Lei, Yu
    Yu, Philip S.
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2016), 2016, : 790 - 793
  • [44] Multi-agent reinforcement learning with adaptive mimetism
    Yamaguchi, T
    Miura, M
    Yachida, M
    ETFA '96 - 1996 IEEE CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, PROCEEDINGS, VOLS 1 AND 2, 1996, : 288 - 294
  • [45] Multi-agent Reinforcement Learning in Network Management
    Bagnasco, Ricardo
    Serrat, Joan
    SCALABILITY OF NETWORKS AND SERVICES, PROCEEDINGS, 2009, 5637 : 199 - 202
  • [46] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188
  • [47] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [48] Quantum Multi-Agent Meta Reinforcement Learning
    Yun, Won Joon
    Park, Jihong
    Kim, Joongheon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11087 - 11095
  • [49] Multi-agent reinforcement learning for intrusion detection
    Servin, Arturo
    Kudenko, Daniel
    ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS, 2008, 4865 : 211 - 223
  • [50] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368