Advanced integration of bidirectional long short-term memory neural networks and innovative extended Kalman filter for state of charge estimation of lithium-ion battery

被引:2
|
作者
Dar, Tasadeek Hassan [1 ]
Singh, Satyavir [1 ]
机构
[1] SRM Univ AP, Sch Engn & Sci, Dept Elect & Elect Engn, Neerukonda 522240, Andhra Pradesh, India
关键词
Bidirectional long short-term memory; Kalman filter; Innovation mechanism; Lithium-ion batteries; Variational and logistic map cuckoo search; approach;
D O I
10.1016/j.jpowsour.2024.235893
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The state of charge (SoC) of a battery is a crucial monitoring indicator for battery management systems and it helps to assess how much further an electric vehicle can travel. This work proposes a novel approach for predicting battery SoC by developing a closed-loop system that integrates a bidirectional long short-term memory neural network with an innovative algorithm-extended Kalman filter. A second-order equivalent circuit model is selected, and its parameters are computed using the variational and logistic map cuckoo search approach. Further, an Extended Kalman filter is combined with an innovation algorithm to update process noise in real-time, and a bidirectional long short-term memory neural network takes the input from the Extended Kalman filter and gives the compensated error value for the final SoC estimation. 75% of dynamic stress test data from the Extended Kalman filter is used for training purposes, remaining data sets are used for testing purposes. The addressed algorithm is validated by evaluating its performance in comparison to individual algorithms and various combined approaches. Empirical analysis demonstrates that the proposed model achieves a root mean square error of 0.11 % and mean absolute error of 0.1 % positioning it as a valuable tool for battery management systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] State of Health Estimation for Lithium-Ion Battery Based on Gray Correlation Analysis and Long Short-Term Memory Neural Network
    Zhou C.
    Wang Y.
    Li K.
    Chen Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (23): : 6065 - 6073
  • [42] Joint estimation of state of charge and state of health for lithium-ion battery based on dual adaptive extended Kalman filter
    Li, Jiabo
    Ye, Min
    Gao, Kangping
    Xu, Xinxin
    Wei, Meng
    Jiao, Shengjie
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13307 - 13322
  • [43] Dynamic harmonic state estimation of an unscented Kalman filter based on long short-term memory neural networks
    Huang M.
    Wang T.
    Wei Z.
    Sun G.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (11): : 1 - 11
  • [44] Lithium-ion battery state-of-charge estimation based on a dual extended Kalman filter and BPNN correction
    Xing, Likun
    Ling, Liuyi
    Wu, Xianyuan
    CONNECTION SCIENCE, 2022, 34 (01) : 2332 - 2363
  • [45] Improved State-of-Charge and Voltage estimation of a Lithium-ion battery based on Adaptive Extended Kalman Filter
    Velivela, Naga Prudhvi
    Guha, Arijit
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [46] State of charge estimation of Lithium-ion battery using an improved fractional-order extended Kalman filter
    Solomon, Oluwole Olalekan
    Zheng, Wei
    Chen, Junxiong
    Qiao, Zhu
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [47] Lithium-ion battery state of charge estimation with model parameters adaptation using H∞, extended Kalman filter
    Zhao, Linhui
    Liu, Zhiyuan
    Ji, Guohuang
    CONTROL ENGINEERING PRACTICE, 2018, 81 : 114 - 128
  • [48] State of charge estimation of lithium-ion battery based on double deep Q network and extended Kalman filter
    You, Guodong
    Wang, Xue
    Fang, Chengxin
    Zhang, Shang
    Hou, Xiaoxin
    2020 INTERNATIONAL CONFERENCE ON GREEN DEVELOPMENT AND ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 615
  • [49] State of charge estimation of Power lithium-ion battery based on an Affine Iterative Adaptive Extended Kalman Filter
    Wu, Muyao
    Qin, Linlin
    Wu, Gang
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [50] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)