Analysis of Fatigue Properties of Selective Laser Melting 316L Stainless Workpiece After Post-heat Treatment

被引:0
|
作者
Zhao, Xinlong [1 ]
Yang, Shanglei [1 ,2 ]
Bi, Junhang [1 ]
Tian, Jiawei [1 ]
Li, Yanlei [1 ]
Huang, Yubao [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
[2] Shanghai Laser Intelligent Mfg & Qual Inspection P, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
316L stainless steel; fatigue; heat treatment; selective laser melting; POWDER BED FUSION; MECHANICAL-PROPERTIES; STEEL; BEHAVIOR; MICROSTRUCTURE;
D O I
10.1007/s11665-024-10412-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The selective laser melting (SLM) technology, which uses lasers to melt powder, has been widely applied worldwide. This study focuses on 316L stainless steel, known for its high strength and excellent wear resistance, to investigate the effects of heat treatment at different temperatures (500, 700, 900, 1100 degrees C) on the fatigue behavior of 316L stainless steel. The characteristics of surface fatigue damage, the origins of fatigue cracks, and the relationship between the printing-induced microstructure and mechanical properties were analyzed, through experimentation. The results show that heat treatment at around 700 degrees C is most effective in enhancing the fatigue strength of SLM-316L, with its fatigue life being approximately 19% longer than that of SLM-316L without heat treatment.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated Using Selective Laser Melting
    Iqbal, N.
    Jimenez-Melero, E.
    Ankalkhope, U.
    Lawrence, J.
    MRS ADVANCES, 2019, 4 (44-45) : 2431 - 2439
  • [42] Evolution Mechanism of Powder Properties of Recycled 316L Stainless Steel in Selective Laser Melting
    Lu C.
    Xiao M.
    Qu Y.
    Yin Y.
    Zhang R.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2021, 48 (14):
  • [43] Surface treatment and corrosion behavior of 316L stainless steel fabricated by selective laser melting
    Lv, Shasha
    Tao, Huimin
    Hong, Yuanjian
    Zheng, Yuanyuan
    Zhou, Chengshuang
    Zheng, Jinyang
    Zhang, Lin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10):
  • [44] Microstructure, mechanical properties, and deformation behaviour of LPBF 316L via post-heat treatment
    Li, Wenqi
    Meng, Lixin
    Niu, Xiaofeng
    Zhou, Wei
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [45] Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes
    Kong, Decheng
    Dong, Chaofang
    Ni, Xiaoqing
    Zhang, Liang
    Yao, Jizheng
    Man, Cheng
    Cheng, Xuequn
    Xiao, Kui
    Li, Xiaogang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (07) : 1499 - 1507
  • [46] Effect of heat treatments on metastable pitting of 316L stainless steel fabricated by selective laser melting
    Zhang, Zhen
    Zhao, Zhanyong
    Li, Xiaofeng
    Wang, Liqing
    Liu, Bin
    Bai, Peikang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 1903 - 1914
  • [47] Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes
    Decheng Kong
    Chaofang Dong
    Xiaoqing Ni
    Liang Zhang
    Jizheng Yao
    Cheng Man
    Xuequn Cheng
    Kui Xiao
    Xiaogang Li
    JournalofMaterialsScience&Technology, 2019, 35 (07) : 1499 - 1507
  • [48] Surface Morphology Analysis and Roughness Prediction of 316L Stainless Steel by Selective Laser Melting
    Mu Weihao
    Chen Xuehui
    Zhang Yu
    Huang Lei
    Zhu Darong
    Dong Bichun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (07)
  • [49] 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting
    Ruidi Li
    Jinhui Liu
    Yusheng Shi
    Mingzhang Du
    Zhan Xie
    Journal of Materials Engineering and Performance, 2010, 19 : 666 - 671
  • [50] On the characterization of stainless steel 316L parts produced by selective laser melting
    Mostafa Yakout
    M. A. Elbestawi
    Stephen C. Veldhuis
    The International Journal of Advanced Manufacturing Technology, 2018, 95 : 1953 - 1974