In-situ exsolved Ni nanoparticles for boosting CO2 reduction in solid oxide electrolysis cell

被引:0
|
作者
Chen, Tao [1 ,2 ,4 ]
Shan, Fei [1 ,2 ,4 ]
Ye, Lingting [1 ,2 ,4 ]
Xie, Kui [1 ,2 ,3 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[4] Univ Chinese Acad Sci, Fujian Coll, Fuzhou 350002, Fujian, Peoples R China
关键词
In-situ exsolution; Metal nanoparticles; Solid oxide electrolytic cell; CO2; reduction; PHYSICAL-PROPERTIES; PEROVSKITE; PERFORMANCE;
D O I
10.1016/j.jpowsour.2024.235456
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to their excellent high Faraday efficiency, perovskite solid oxide cells (SOECs) have attracted considerable attention. Nevertheless, they still face significant challenges in terms of stability and electrocatalytic activity during COQ electrolysis. In this study, Ni particles in La 0.65 Ba 0.35 Mn 1-x Ni x O 3-delta are successfully separated by a unique in-situ exsolved method of metal nanoparticles, which are uniformly anchored to the electrode surface as Ni nanometal particles. This effectively suppresses the generation of carbon deposits on the cathode surface. Under test conditions of 850 degrees C, 1.6 V and 50 sccm flow rate, the CO yield of the modified cathode material reached 5.9 mL min-1 cm -2 , which is nearly four times higher than that before doping. The synergistic effect of in-situ exsolution of Ni metal nanoparticles with oxygen defects generated by the perovskite, creating more active locations for CO2 adsorption and electrolysis, is responsible for the significant improvement in electrochemical performance. This work provides new strategies and ideas for the development of efficient and durable SOEC cathode materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Double perovskite decorated with in situ exsolved Fe nanoparticles as active catalyst for CO2 electrolysis
    Tan, Yuan
    Tang, Jiangcheng
    Yang, Caichen
    Tian, Yunfeng
    Wang, Ziling
    Pu, Jian
    Chi, Bo
    CERAMICS INTERNATIONAL, 2023, 49 (24) : 40797 - 40803
  • [22] In situ exsolved FeTe alloy nanoparticles of a double perovskite cathode for efficient CO2 electrolysis
    Khan, Muhammad Nadeem
    Ye, Lingting
    Xie, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 1353 - 1362
  • [23] Microkinetic modeling of CO2 reduction on Pt in a solid oxide electrolysis cell
    Janardhanan, Vinod M.
    Monder, Dayadeep S.
    ELECTROCHIMICA ACTA, 2022, 410
  • [24] In situ construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO2 reduction electrocatalysts for high performance solid oxide electrolysis cells
    Xi, Xiuan
    Fan, Yun
    Zhang, Jiujun
    Luo, Jing-Li
    Fu, Xian-Zhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (05) : 2509 - 2518
  • [25] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhang, Lixiao
    Hu, Shiqing
    Zhu, Xuefeng
    Yang, Weishen
    JOURNAL OF ENERGY CHEMISTRY, 2017, 26 (04) : 593 - 601
  • [26] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Zhan, Zhongliang
    Zhao, Lin
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7250 - 7254
  • [27] Electrochemical reduction of CO2 in solid oxide electrolysis cells
    Lixiao Zhang
    Shiqing Hu
    Xuefeng Zhu
    Weishen Yang
    Journal of Energy Chemistry , 2017, (04) : 593 - 601
  • [28] In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO
    Park, Seongmin
    Kim, Yoongon
    Han, Hyunsu
    Chung, Yong Sik
    Yoon, Wongeun
    Choi, Junil
    Kim, Won Bae
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 248 (147-156) : 147 - 156
  • [29] A highly efficient and stable perovskite cathode with in situ exsolved NiFe alloy nanoparticles for CO2 electrolysis
    Wang, Mengmeng
    Li, Naizhi
    Shen, Qing
    Zhan, Zhongliang
    Chen, Chusheng
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (08) : 2038 - 2044
  • [30] Nanofibrous perovskite ceramics with in-situ exsolved Ni3Fe alloy nanoparticles for catalytic CO2 methanation
    Xie, Xiaoyu
    Ma, Yuyao
    Wang, Tengpeng
    Gao, Yi
    Li, Jiajie
    Zhang, Tongjian
    Ye, Zhengmao
    Dong, Dehua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 970