Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms

被引:0
|
作者
Komanduri, Aneesh [1 ]
Wu, Yongkai [2 ]
Chen, Feng [3 ]
Wu, Xintao [1 ]
机构
[1] Univ Arkansas, Fayetteville, AR 72701 USA
[2] Clemson Univ, Clemson, SC USA
[3] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COMPONENT ANALYSIS;
D O I
暂无
中图分类号
学科分类号
摘要
Learning disentangled causal representations is a challenging problem that has gained significant attention recently due to its implications for extracting meaningful information for downstream tasks. In this work, we define a new notion of causal disentanglement from the perspective of independent causal mechanisms. We propose ICM-VAE, a framework for learning causally disentangled representations supervised by causally related observed labels. We model causal mechanisms using nonlinear learnable flow-based diffeomorphic functions to map noise variables to latent causal variables. Further, to promote the disentanglement of causal factors, we propose a causal disentanglement prior learned from auxiliary labels and the latent causal structure. We theoretically show the identifiability of causal factors and mechanisms up to permutation and elementwise reparameterization. We empirically demonstrate that our framework induces highly disentangled causal factors, improves interventional robustness, and is compatible with counterfactual generation.
引用
收藏
页码:4308 / 4316
页数:9
相关论文
共 50 条
  • [41] Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning
    Liu, Xinyue
    Li, Bohan
    Chen, Yijun
    Li, Xiaoxue
    Xu, Shuai
    Yin, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 35 - 50
  • [42] Disentangled Causal Embedding With Contrastive Learning For Recommender System
    Zhao, Weiqi
    Tang, Dian
    Chen, Xin
    Lv, Dawei
    Ou, Daoli
    Li, Biao
    Jiang, Peng
    Gai, Kun
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 406 - 410
  • [43] Weakly Supervised Disentangled Generative Causal Representation Learning
    Shen, Xinwei
    Liu, Furui
    Dong, Hanze
    Lian, Qing
    Chen, Zhitang
    Zhang, Tong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [44] Weakly Supervised Disentangled Generative Causal Representation Learning
    Shen, Xinwei
    Liu, Furui
    Dong, Hanze
    Lian, Qing
    Chen, Zhitang
    Zhang, Tong
    Journal of Machine Learning Research, 2022, 23
  • [45] Learning Fair Representations for Recommendation via Information Bottleneck Principle
    Xie, Junsong
    Yang, Yonghui
    Wang, Zihan
    Wu, Le
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 2469 - 2477
  • [46] CDRM: Causal disentangled representation learning for missing data
    Chen, Mingjie
    Wang, Hongcheng
    Wang, Ruxin
    Peng, Yuzhong
    Zhang, Hao
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [47] KNOWLEDGE ROUTER: Learning Disentangled Representations for Knowledge Graphs
    Zhang, Shuai
    Rao, Xi
    Tay, Yi
    Zhang, Ce
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 1 - 10
  • [48] A sober look at the unsupervised learning of disentangled representations and their evaluation
    Locatello, Francesco
    Bauer, Stefan
    Lucic, Mario
    Rätsch, Gunnar
    Gelly, Sylvain
    Schölkopf, Bernhard
    Bachem, Olivier
    Journal of Machine Learning Research, 2020, 21
  • [49] Temporal Consistency Objectives Regularize the Learning of Disentangled Representations
    Valvano, Gabriele
    Chartsias, Agisilaos
    Leo, Andrea
    Tsaftaris, Sotirios A.
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER AND MEDICAL IMAGE LEARNING WITH LESS LABELS AND IMPERFECT DATA, DART 2019, MIL3ID 2019, 2019, 11795 : 11 - 19
  • [50] A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
    Locatello, Francesco
    Bauer, Stefan
    Lucic, Mario
    Ratsch, Gunnar
    Gelly, Sylvain
    Schoelkopf, Bernhard
    Bachem, Olivier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21