A novel framework for river organic carbon retrieval through satellite data and machine learning

被引:0
|
作者
Tian, Shang [1 ,2 ,3 ,4 ]
Sha, Anmeng [1 ,2 ,3 ,4 ]
Luo, Yingzhong [1 ]
Ke, Yutian [5 ]
Spencer, Robert [6 ]
Hu, Xie [7 ]
Ning, Munan [8 ]
Zhao, Yi [1 ]
Deng, Rui [1 ]
Gao, Yang [9 ]
Liu, Yong [1 ]
Li, Dongfeng [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, Key Lab Water & Sediment Sci, Minist Educ, Beijing 100871, Peoples R China
[2] Peking Univ, State Environm Protect Key Lab All Mat Flux River, Beijing 100871, Peoples R China
[3] Peking Univ, Inst Carbon Neutral, Beijing 100871, Peoples R China
[4] Peking Univ, Inst Tibetan Plateau, Beijing 100871, Peoples R China
[5] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[6] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL USA
[7] Peking Univ, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[8] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Guangdong, Peoples R China
[9] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Particulate organic carbon; Dissolved organic; carbon; Remote sensing; Machine learning; River; MATTER CDOM; WATER; PERFORMANCE; INDEX; ABSORPTION; LANDSAT-8; QUALITY; FLUXES; COLOR; LAND;
D O I
10.1016/j.isprsjprs.2025.01.028
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Rivers transport large amounts of carbon, serving as a critical link between terrestrial, coastal, and atmospheric biogeochemical cycles. However, our observations and understanding of long-term river carbon dynamics in large-scale remain limited. Integrating machine learning with remote sensing offers an effective approach for quantifying organic carbon (OC) from space. Here, we develop the Aquatic-Organic Carbon (Aqua-OC), a dynamic machine learning retrieval framework designed to estimate reach-scale river OC using nearly half a century of analysis-ready Landsat archives. We first integrate a globally representative river OC dataset, comprising 299,330 measurements of dissolved organic carbon (DOC) and 101,878 measurements of particulate organic carbon (POC). This dataset is then used to evaluate the performance of four machine learning methods, i. e., random forest (RF), extreme gradient boosting (XGBoost), Support vector regression (SVR), and deep neural network (DNN), using an optical water type classification strategy. We further leverage multimodal input features to enhance the Aqua-OC framework and OC retrieval accuracy by considering various factors related to OC sources and environmental conditions. The results demonstrate that the Aqua-OC can effectively estimate DOC (R2 = 0.68, RMSE = 2.88 mg/L, Bias = 2.63 %, Error = 12.52 %) and POC (R2 = 0.76, RMSE = 1.76 mg/L, Bias = 6.31 %, Error = 21.36 %). Additionally, the Mississippi River Basin case study demonstrates Aqua-OC's capability to map nearly four decades of reach-scale OC changes at a basin scale. This study provides a generalized method for satellite-based river OC retrieval at fine spatial and long-term temporal scales, thus offering an effective tool to quantify the rivers' role in the global carbon cycle.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [41] A novel framework to predict chlorophyll-a concentrations in water bodies through multi-source big data and machine learning algorithms
    Hamed Karimian
    Jinhuang Huang
    Youliang Chen
    Zhaoru Wang
    Jinsong Huang
    Environmental Science and Pollution Research, 2023, 30 : 79402 - 79422
  • [42] Hurricane Forecasting: A Novel Multimodal Machine Learning Framework
    Boussioux, Leonard
    Zeng, Cynthia
    Guenais, Theo
    Bertsimas, Dimitris
    WEATHER AND FORECASTING, 2022, 37 (06) : 817 - 831
  • [43] Scalable interpolation of satellite altimetry data with probabilistic machine learning
    Gregory, William
    MacEachern, Ronald
    Takao, So
    Lawrence, Isobel R.
    Nab, Carmen
    Deisenroth, Marc Peter
    Tsamados, Michel
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [44] Towards advancing the earthquake forecasting by machine learning of satellite data
    Xiong, Pan
    Tong, Lei
    Zhang, Kun
    Shen, Xuhui
    Battiston, Roberto
    Ouzounov, Dimitar
    Iuppa, Roberto
    Crookes, Danny
    Long, Cheng
    Zhou, Huiyu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 771
  • [45] Machine Learning Nowcasting of PV Energy Using Satellite Data
    Catalina, Alejandro
    Torres-Barran, Alberto
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 97 - 115
  • [46] Monitoring hydropower reliability in Malawi with satellite data and machine learning
    Falchetta, Giacomo
    Kasamba, Chisomo
    Parkinson, Simon C.
    ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (01)
  • [47] Machine Learning Nowcasting of PV Energy Using Satellite Data
    Alejandro Catalina
    Alberto Torres-Barrán
    Carlos M. Alaíz
    José R. Dorronsoro
    Neural Processing Letters, 2020, 52 : 97 - 115
  • [48] Task Scheduling Under a Novel Framework for Data Relay Satellite Network via Deep Reinforcement Learning
    Li, Jiaxing
    Wu, Guohua
    Liao, Tianjun
    Fan, Mingfeng
    Mao, Xiao
    Pedrycz, Witold
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6654 - 6668
  • [49] A Data-Centric Optimization Framework for Machine Learning
    Rausch, Oliver
    Ben-Nun, Tal
    Dryden, Nikoli
    Ivanov, Andrei
    Li, Shigang
    Hoefler, Torsten
    PROCEEDINGS OF THE 36TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ICS 2022, 2022,
  • [50] An evolutionary framework for machine learning applied to medical data
    Castellanos-Garzon, Jose A.
    Costa, Ernesto
    Luis Jaimes, Jose S.
    Corchado, Juan M.
    KNOWLEDGE-BASED SYSTEMS, 2019, 185