Solar radiation shapes the spatial pattern of spring phenology on the Qinghai-Tibetan Plateau

被引:0
|
作者
Meng, Fandong [1 ]
Yan, Yanzi [2 ]
Li, Lili [3 ]
Zhang, Lirong [4 ]
Guo, Bixi [1 ]
Yang, Zhiyong [1 ]
Dorji, Tsechoe [1 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Resources, Beijing 100101, Peoples R China
[2] Swedish Univ Agr Sci, Dept Soil & Environm, SE-75007 Uppsala, Sweden
[3] West Yunnan Univ Appl Sci, Kunming 671000, Yunnan, Peoples R China
[4] Hebei Normal Univ Nationalities, Dept Resources & Environm, Chengde 067600, Peoples R China
基金
中国国家自然科学基金;
关键词
spatial pattern; boosted regression trees; strong radiation; acclimation; phenology; (sic)(sic)(sic)(sic); (sic)(sic)(sic)(sic)(sic); (sic)(sic)(sic); (sic)(sic); CLIMATE-CHANGE; PHENOTYPIC PLASTICITY; FLOWERING PHENOLOGY; GROWING-SEASON; ALPINE PLANTS; GREEN-UP; RESPONSES; GRADIENT; DIFFERENTIATION; FLUORESCENCE;
D O I
10.1093/jpe/rtae114
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The spatial pattern of phenology reflects long-term plant adaptation to local environments, yet the drivers of these patterns remain poorly understood. Using satellite data from 2001 to 2018, this study employed the normalized difference vegetation index for vegetation structural greenness and solar-induced chlorophyll fluorescence for vegetation functional photosynthesis to analyze spring phenology on the Qinghai-Tibetan Plateau (hereafter, QTP). A machine learning method, Boosted Regression Trees (BRT), was applied to evaluate the contributions of 19 abiotic and biotic factors to the spring phenology. The results showed that both the spring leaf phenology (SOSNDVI) and photosynthesis phenology (SOSCISF) exhibited a delayed trend decreasing from east to west across the QTP. BRT analysis demonstrated shortwave radiation or/and elevation as key drivers, with higher radiation or elevation associated with more delayed spring phenology spatially, likely due to the constraints of extreme radiation and elevations on spring phenology. Furthermore, we also noted that plants were acclimated to strong radiation to some extent with increasing elevation, namely declined negative effect of radiation/elevation on spring phenology. This acclimation likely enhances plant fitness in the harsh environments of the QTP. Our study provides novel insights into plant phenology on the QTP and highlights the importance of integrating spatial and temporal analysis to improve the localization of phenology models. (sic)(sic) (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic) <label/> (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)2001-2018(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(NDVI)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SIF)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(BRT)(sic)(sic), (sic)(sic)(sic)19(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(SOSNDVI)(sic)(sic)(sic)(sic)(sic)(SOSSIF)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)/(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Amplitude of climatic changes in Qinghai-Tibetan Plateau
    Yao, TD
    Liu, XD
    Wang, NL
    Shi, YF
    CHINESE SCIENCE BULLETIN, 2000, 45 (13): : 1236 - 1243
  • [32] Recent permafrost warming on the Qinghai-Tibetan plateau
    Wu, Qingbai
    Zhang, Tingjun
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D13)
  • [33] Chronic mountain sickness on the Qinghai-Tibetan plateau
    WU Tian yi High Altitude Medical Research Institute
    中华医学杂志(英文版), 2005, (02) : 75 - 82
  • [34] Evolutionary diversificatons of plants on the Qinghai-Tibetan Plateau
    Wen, Jun
    Zhang, Jian-Qiang
    Nie, Ze-Long
    Zhong, Yang
    Sun, Hang
    FRONTIERS IN GENETICS, 2014, 5
  • [35] Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982-2013)
    Zhang, Qiang
    Kong, Dongdong
    Shi, Peijun
    Singh, Vijay P.
    Sun, Peng
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 248 : 408 - 417
  • [36] The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas
    Favre, Adrien
    Paeckert, Martin
    Pauls, Steffen U.
    Jaehnig, Sonja C.
    Uhl, Dieter
    Michalak, Ingo
    Muellner-Riehl, Alexandra N.
    BIOLOGICAL REVIEWS, 2015, 90 (01) : 236 - 253
  • [37] Phylogeography of Tibetan snowcock (Tetraogallus tibetanus) in Qinghai-Tibetan Plateau
    An, Bei
    Zhang, Lixun
    Browne, Stephen
    Liu, Naifa
    Ruan, Luzhang
    Song, Sen
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 50 (03) : 526 - 533
  • [38] Diverse Responses of Phenology in Multi-Grassland to Environmental Factors on Qinghai-Tibetan Plateau in China
    Qin, Gexia
    Adu, Benjamin
    Li, Chunbin
    Wu, Jing
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 148 (3-4) : 931 - 942
  • [39] Spatial-Temporal Variability of Snow Cover and Depth in the Qinghai-Tibetan Plateau
    Xu, Wenfang
    Ma, Lijuan
    Ma, Minna
    Zhang, Haicheng
    Yuan, Wenping
    JOURNAL OF CLIMATE, 2017, 30 (04) : 1521 - 1533
  • [40] Diurnal and seasonal variations of UV radiation on the northern edge of the Qinghai-Tibetan Plateau
    Cui, Xiaoyong
    Gu, Song
    Zhao, Xinquan
    Wu, Jing
    Kato, Tomomichi
    Tang, Yanhong
    AGRICULTURAL AND FOREST METEOROLOGY, 2008, 148 (01) : 144 - 151