Co-application of Biochar and Arbuscular Mycorrhizal Fungi (AMF) for Mitigating Salinity Stress in Mangrove Seedlings

被引:0
|
作者
Paramaputra, Muhammad Hafizh [1 ]
Khoirunnisa, Nur Syafira [2 ]
Wijaya, Leonard [3 ]
Kanti, Atit [4 ]
Sudiana, I. Made [2 ]
Napitupulu, Toga Pangihotan [2 ]
机构
[1] Brawijaya Univ, Fac Agr, Dept Soil Sci, Agroecotechnol Study Program, Malang, Indonesia
[2] Natl Res & Innovat Agcy BRIN Indonesia, Res Org Life Sci & Environm, Res Ctr Appl Microbiol, Jl Raya Jakarta Bogor Km 46, Cibinong 16911, Indonesia
[3] Natl Res & Innovat Agcy BRIN Indonesia, Res Org Life Sci & Environm, Res Ctr Environm Resources Sustainabil, Bandung, Indonesia
[4] Natl Res & Innovat Agcy BRIN Indonesia, Res Org Life Sci & Environm, Res Ctr Biosystemat & Evolut, Cibinong, Indonesia
关键词
Abiotic stress; climate change; coastal ecosystem; revegetation; rhizopora; SOIL ORGANIC-MATTER; GROWTH;
D O I
10.1080/00103624.2025.2466603
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
High salinity affects not only mangrove plants but also their surrounding ecosystem; thus, countermeasure action is inevitable. Therefore, the aim of this study was to mitigate salinity stress in mangroves through the co-application of biochar and AMF. Rhizophora apiculata, a true, pioneering, and salt-tolerant mangrove species, was selected as the model plant. The experiment was designed using a completely randomized factorial design. Six amendment treatments were set up in this experiment: (1) control (without addition of AMFs and biochar); (2) AMF (sole application of AMFs); (3) Bio1 (sole application of 1% w/w biochar); (4) Bio1 + AMF; (5) Bio10 (sole application of 10% w/w biochar); and (6) Bio10 + AMF. In order to examine the effect of salinity stress, two gradients of artificial seawater were conducted for each treatment: low salinity (5% v/v of seawater) and high salinity (60% v/v of seawater). The result showed that Bio10 + AMF was able to significantly increase the epicotyl height by 102% and 78% compared to control in low and high salinity, respectively. Moreover, in low salinity, the Bio10 + AMF increased 46.7% of fresh plant weight, but only 19.1% in high salinity. Application of Bio10 + AMF decreased 52.7% of malonaldehyde content compared to control, an indication of salinity stress alleviation. For mycorrhization, the addition of 1% and 10% biochar to AMF increased 45.3% and 49.3% of root colonization, respectively. In conclusion, the addition of biochar to AMF has significant potency to improve mangrove growth, alleviate salinity stress, and increase root mycorrhization.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Contribution of Arbuscular Mycorrhizal Fungi (AMF) in Improving the Growth and Yield Performances of Flax (Linum usitatissimum L.) to Salinity Stress
    Kakabouki, Ioanna
    Stavropoulos, Panteleimon
    Roussis, Ioannis
    Mavroeidis, Antonios
    Bilalis, Dimitrios
    AGRONOMY-BASEL, 2023, 13 (09):
  • [22] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Sonal Mathur
    Rupal Singh Tomar
    Anjana Jajoo
    Photosynthesis Research, 2019, 139 : 227 - 238
  • [23] Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
    Mathur, Sonal
    Tomar, Rupal Singh
    Jajoo, Anjana
    PHOTOSYNTHESIS RESEARCH, 2019, 139 (1-3) : 227 - 238
  • [24] Role played by arbuscular mycorrhizal fungi in amelioration of salinity stress: a review
    Pooja, Pooja
    Tallapragada, Sridevi
    Lamba, Ankisha
    Punia, Shweta
    PLANT AND SOIL, 2024,
  • [25] SALINITY STRESS IN PLANTS: CAN ARBUSCULAR MYCORRHIZAL FUNGI BE A PROMISING SOLUTION?
    Yu, J. L.
    Al-khayri, J. M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024,
  • [26] Salinity stress alleviation using arbuscular mycorrhizal fungi. A review
    Rosa Porcel
    Ricardo Aroca
    Juan Manuel Ruiz-Lozano
    Agronomy for Sustainable Development, 2012, 32 : 181 - 200
  • [27] Salinity stress alleviation using arbuscular mycorrhizal fungi. A review
    Porcel, Rosa
    Aroca, Ricardo
    Manuel Ruiz-Lozano, Juan
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2012, 32 (01) : 181 - 200
  • [28] Co-application of arbuscular mycorrhizal fungi and engineered nanomaterials: A promising strategy for crop resilience against abiotic stresses
    Joel, Joy M.
    Johnson, Riya
    Puthur, Jos T.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 162 : 314 - 323
  • [29] Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings
    Klinsukon, Chaiya
    Lumyong, Saisamorn
    Kuyper, Thomas W.
    Boonlue, Sophon
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity
    Li, Zhen
    Wu, Na
    Meng, Sen
    Wu, Fei
    Liu, Ting
    PLOS ONE, 2020, 15 (04):