ADVANCED MECHANICAL PERFORMANCE OPTIMIZATION OF FRICTION STIR WELDED AZ31 MAGNESIUM ALLOY USING ARTIFICIAL NEURAL NETWORK AND GREY RELATIONAL ANALYSIS

被引:0
|
作者
Sabari, K. [1 ]
Muniappan, A. [1 ]
Deepanraj, B. [2 ]
Mohamed, M. jinnah sheik [3 ]
机构
[1] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Chennai 602105, Tamil Nadu, India
[2] Prince Mohammad Bin Fahd Univ, Coll Engn, Al Khobar 31952, Saudi Arabia
[3] Nellai Coll Engn, Tirunelveli 627151, Tamil Nadu, India
关键词
FSW; AZ31 Mg alloy; TiC; GRA; ANN; mechanical properties; MATRIX COMPOSITES; ALUMINUM-ALLOYS; PROCESS PARAMETERS; TOOL; MICROSTRUCTURE; DUCTILITY; FINISH;
D O I
10.1142/S0218625X25501173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Friction stir welding (FSW) has become one of the most used solid-state joining methods because of the increased mechanical properties and weld quality that can be obtained. The present investigation focuses on the effects of Titanium Carbide nanoparticles (TiCnp) reinforcement with the welds of AZ31 magnesium alloy using the grey relational coefficient optimization technique with the aid of artificial neural networks (ANNs) for modeling. The parameters considered are TiCnp content of approximately 1.5wt.%, tool inclination angle of 0 degrees, 1 degrees, and 2 degrees, tool spindle speed of 1000, 1250, and 1500rpm, tool geometry square, cylinder, and triangle, feed rate of 25, 50, and 75mm/min and axial force of 5, 10, and 15kN. Other mechanical properties determined involve microhardness, Tensile Strength (TS), wear rate (WR), and impact strength (IS). The results show the improvement of mechanical properties with an increase in TiCnp concentration within the range which implies that the highest TS of 242MPa is obtainable when the amount of TiCnp is optimally added. Interestingly, while identifying the optimal parameters for mechanical properties, it was ascertained that 1250rpm of rotational speed (RS), 50mm/min of traverse speed (TS), 1 degrees of tilt angle (TA), and square tool profile shape were found to have the best results. Similar findings were backed up by the ANN models whereby the introduction of TiCnp into the AZ31Mg alloy boosts TS to about 130MPa, microhardness to 70MPa and IS to about 89.34MPa, and lowers WR to 0.0046m3/m. This integrated approach highlights the possibility of applying ANN coupled with grey relational analysis for the improvement of FSW process for improving the material characteristics.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Tensile behavior of friction-stir welded AZ31 magnesium alloy
    Mironov, S.
    Onuma, T.
    Sato, Y. S.
    Yoneyama, S.
    Kokawa, H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 679 : 272 - 281
  • [12] Mechanical properties of friction welded joints of AZ31 magnesium alloy
    Katoh, K
    Asahina, T
    Tokisue, H
    PROCEEDINGS OF THE SEVENTH (1997) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL IV, 1997, 1997, : 37 - 43
  • [13] Microstructural analysis of friction stir welded Mg AZ31 alloy
    Gulati, Piyush
    Shukla, Dinesh Kumar
    Gupta, Akash
    Singh, Manpreet
    Kumar, Rajeev
    Singh, Jaiinder Preet
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 1145 - 1150
  • [14] Friction stir welding of AZ31 magnesium alloy
    林三宝
    张华
    吴林
    冯吉才
    戴鸿滨
    China Welding, 2003, (02) : 57 - 61
  • [15] Microstructures and mechanical properties of thick AZ31 magnesium alloy welded joint by friction stir welding
    Yang, Suyuan
    Zhang, Baolei
    Hanjie Xuebao/Transactions of the China Welding Institution, 2009, 30 (05): : 1 - 4
  • [16] Microstructure and mechanical properties of friction stir welded AZ31 Mg alloy
    Lee, WB
    Yeon, YM
    Kim, SK
    Kim, YJ
    Jung, SB
    MAGNESIUM TECHNOLOGY 2002, 2002, : 309 - 312
  • [17] Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties
    S. H. Chowdhury
    D. L. Chen
    S. D. Bhole
    X. Cao
    P. Wanjara
    Metallurgical and Materials Transactions A, 2013, 44 : 323 - 336
  • [18] Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties
    Chowdhury, S. H.
    Chen, D. L.
    Bhole, S. D.
    Cao, X.
    Wanjara, P.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (01): : 323 - 336
  • [19] Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy
    Wang Xunhong
    Wang Kuaishe
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 431 (1-2): : 114 - 117
  • [20] Characteristics of Microstructure and Microhardness of Friction Stir Welded Joints for AZ31 Magnesium Alloy
    Wang Shanlin
    Zhang Hengyv
    Xing Li
    MECHANICAL SCIENCE AND ENGINEERING IV, 2014, 472 : 612 - 616