THE NUMBER OF PAIRWISE NONCOMMUTING SETS IN A FINITE GROUP

被引:0
|
作者
Yang, Yong [1 ]
Zarrin, Mohammad [1 ]
机构
[1] Texas State Univ, 601 Univ Dr, San Marcos, TX 78666 USA
关键词
pairwise noncommuting sets; solvable groups;
D O I
10.1017/S0004972724001370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$ . We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
引用
收藏
页数:8
相关论文
共 50 条