THE NUMBER OF PAIRWISE NONCOMMUTING SETS IN A FINITE GROUP

被引:0
|
作者
Yang, Yong [1 ]
Zarrin, Mohammad [1 ]
机构
[1] Texas State Univ, 601 Univ Dr, San Marcos, TX 78666 USA
关键词
pairwise noncommuting sets; solvable groups;
D O I
10.1017/S0004972724001370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$ . We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the maximum number of the pairwise noncommuting elements in a finite group
    Amiri, Seyyed Majid Jafarian
    Madadi, Halimeh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (10)
  • [2] Centralizers and the maximum size of the pairwise noncommuting elements in finite groups
    Amiri, Seyyed Majid Jafarian
    Rostami, Hojjat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 193 - 198
  • [3] On the noncommuting graph associated with a finite group
    Moghaddamfar, AR
    Shi, WJ
    Zhou, W
    Zokayi, AR
    SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (02) : 325 - 332
  • [4] On the noncommuting graph associated with a finite group
    A. R. Moghaddamfar
    W. J. Shi
    W. Zhou
    A. R. Zokayi
    Siberian Mathematical Journal, 2005, 46 : 325 - 332
  • [5] On the maximal number of elements pairwise generating the finite alternating group
    Fumagalli, Francesco
    Garonzi, Martino
    Gheri, Pietro
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 205
  • [6] ON MAXIMAL SUBSETS OF PAIRWISE NONCOMMUTING ELEMENTS IN FINITE p-GROUPS
    Darafsheh, M. R.
    Ghorbani, M.
    Prajapati, S. K.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (03) : 380 - 389
  • [7] Twin g-noncommuting graph of a finite group
    Zahidah, Siti
    Oktaviana, Karine Lutfiah
    Susilowati, Liliek
    Wahyuni, Yayuk
    Erfanian, Ahmad
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 287 - 295
  • [8] MAXIMUM SIZE OF SUBSETS OF PAIRWISE NONCOMMUTING ELEMENTS IN FINITE METACYCLIC p-GROUPS
    Fouladi, S.
    Orfi, R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (01) : 18 - 23
  • [9] THE NUMBER OF PAIRWISE NON-COMMUTING ELEMENTS AND THE INDEX OF THE CENTER IN A FINITE-GROUP
    PYBER, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 : 287 - 295
  • [10] Sets of elements that pairwise generate a linear group
    Britnell, J. R.
    Evseev, A.
    Guralnick, R. M.
    Holmes, P. E.
    Maroti, A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 442 - 465