Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows

被引:0
|
作者
Liang, Bo [1 ,2 ,3 ,4 ]
Du, Minghui [1 ]
Wang, He [4 ,6 ]
Xu, Yuxiang [1 ,2 ,3 ,4 ]
Liu, Chang [7 ]
Wei, Xiaotong [1 ]
Xu, Peng [1 ,2 ,4 ,5 ]
Qiang, Li-e [7 ]
Luo, Ziren [1 ,2 ,4 ,6 ]
机构
[1] Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China
[2] UCAS, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Univ Beijing Hangzhou, Beijing 100049, Peoples R China
[5] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[6] Univ Chinese Acad Sci UCAS, Int Ctr Theoret Phys Asia Pacific ICTP AP, Beijing 100049, Peoples R China
[7] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 04期
关键词
gravitational wave; massive black hole binaries; continuous normalizing flows; flow matching; COUNTERPARTS; SPACE; LISA;
D O I
10.1088/2632-2153/ad8da9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as laser interferometer space antenna, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, such analyses usually entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we explore the application of continuous normalizing flows (CNFs) on the parameter estimation of MBHBs. Specifically, we employ linear interpolation and trig interpolation methods to construct transport paths for training CNFs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector's response function. This transformation is integrated within CNFs, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using CNFs. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The search for massive black hole binaries with LISA
    Cornish, Neil J.
    Porter, Edward K.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (23) : 5729 - 5755
  • [22] Massive black hole binaries in galactic nuclei
    Makino, J
    CENTRAL REGIONS OF THE GALAXY AND GALAXIES, 1998, : 483 - 484
  • [23] Rapid spectral parameter prediction for black hole X-ray binaries using physicalized autoencoders
    Tregidga, Ethan
    Steiner, James F.
    Garraffo, Cecilia
    Rhea, Carter
    Aubin, Mayeul
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (02) : 1654 - 1666
  • [24] Premerger detection of massive black hole binaries using deep learning
    Ruan, Wen-Hong
    Guo, Zong-Kuan
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [25] Spin alignment and differential accretion in merging black hole binaries
    Gerosa, D.
    Veronesi, B.
    Lodato, G.
    Rosotti, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (04) : 3941 - 3954
  • [26] Low latency detection of massive black hole binaries
    Cornish, Neil J.
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [27] Premerger observation and characterization of massive black hole binaries
    Davies, Gareth Cabourn
    Harry, Ian
    Williams, Michael J.
    Bandopadhyay, Diganta
    Barack, Leor
    Bayle, Jean-Baptiste
    Hoy, Charlie
    Klein, Antoine
    Middleton, Hannah
    Moore, Christopher J.
    Nuttall, Laura
    Pratten, Geraint
    Vecchio, Alberto
    Woan, Graham
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [28] Massive black hole binaries from collisional runaways
    Gürkan, MA
    Fregeau, JM
    Rasio, FA
    ASTROPHYSICAL JOURNAL, 2006, 640 (01): : L39 - L42
  • [29] The stellar kinematic signature of massive black hole binaries
    Meiron, Yohai
    Laor, Ari
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (03) : 1497 - 1513
  • [30] Cosmic archaeology with massive stellar black hole binaries
    Graziani, L.
    Schneider, R.
    Marassi, S.
    Del Pozzo, W.
    Mapelli, M.
    Giacobbo, N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 495 (01) : L81 - L85