A meta-transfer learning prediction method with few-shot data for the remaining useful life of rolling bearing

被引:0
|
作者
She, Daoming [1 ]
Duan, Yudan [1 ]
Yang, Zhichao [1 ]
Pecht, Michael [2 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Univ Maryland, Ctr Adv Life Cycle Engn, College Pk, MD USA
基金
中国国家自然科学基金;
关键词
Meta-learning; transfer learning; remaining useful life; few-shot data; variable operating conditions; INDICATOR CONSTRUCTION; NEURAL-NETWORK;
D O I
10.1177/14759217251321080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rolling bearings are essential components of rotating machinery. It is crucial to predict and manage the health of rolling bearings. This article proposes a meta transfer learning-based remaining useful life (RUL) prediction approach with few-shot data for rolling bearing. First, multiple subtasks under variable operating conditions are constructed. A subtask and cross-subtask-based gradient optimization model is employed to extract degradation knowledge adaptively. The batch feature norm differences method is presented to reduce the impact of negative transfer and poor transfer performance. Interdomain transferable features are obtained by minimizing the difference in the number of feature paradigms between the source and target domains. Therefore, the Meta-SGD transfer learning approach realizes the RUL prediction under few-shot data and variable operating conditions. Two cases validate the effectiveness of the presented method.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Remaining useful life prediction of rolling bearing using fractal theory
    Meng, Zong
    Li, Jing
    Yin, Na
    Pan, Zuozhou
    MEASUREMENT, 2020, 156
  • [42] Remaining useful life prediction of rolling bearing based on anomaly correction
    Li, Yanfeng
    Zhao, Wenyan
    Wang, Zhijian
    Dong, Lei
    Ren, Weibo
    Chen, Zhongxin
    Fan, Xin
    Wang, Junyuan
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [43] Prior knowledge-embedded meta-transfer learning for few-shot fault diagnosis under variable operating conditions
    Lei, Zihao
    Zhang, Ping
    Chen, Yuejian
    Feng, Ke
    Wen, Guangrui
    Liu, Zheng
    Yan, Ruqiang
    Chen, Xuefeng
    Yang, Chunsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [44] Stages prediction of the remaining useful life of rolling bearing based on regularized extreme learning machine
    Wu, Chenchen
    Sun, Hongchun
    Zhang, Zihan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6599 - 6610
  • [45] Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (02)
  • [46] Remaining useful life prediction method of rolling bearing based on SKF-KF-Bayes
    Xu Y.
    Qiu M.
    Li J.
    Liu L.
    Niu K.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (19): : 26 - 31and40
  • [47] A novel Switching Unscented Kalman Filter method for remaining useful life prediction of rolling bearing
    Cui, Lingli
    Wang, Xin
    Xu, Yonggang
    Jiang, Hong
    Zhou, Jianping
    MEASUREMENT, 2019, 135 : 678 - 684
  • [48] Rolling bearing remaining useful life prediction method based on vibration signal and mechanism model
    Zhao, Xiuliang
    Yang, Ye
    Huang, Qian
    Fu, Qiang
    Wang, Ruochen
    Wang, Limei
    APPLIED ACOUSTICS, 2025, 228
  • [49] Remaining useful life prediction method of rolling bearing based on LSTM‑ES‑RVM networks
    Zhou S.-W.
    Guo S.-S.
    Du B.-G.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (06): : 1723 - 1735
  • [50] Few-shot fault diagnosis method for rolling bearing using local descriptors
    An, Langfei
    Jia, Feng
    Wang, Bo
    Hou, Jingru
    Shen, Jianjun
    Song, Xuding
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1381 - 1386