Enhanced Efficiency and Intrinsic Stability of Wide-Bandgap Perovskite Solar Cells Through Dimethylamine-Based Cation Engineering

被引:0
|
作者
Dong, Tianhe [1 ]
Tan, Li [1 ]
Li, Ze [1 ]
Li, Jiashun [1 ]
Li, Hongyu [1 ]
Liao, Jing [1 ]
Chen, Xu [1 ]
Zhang, Wenfeng [1 ]
Li, Haijin [1 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
关键词
Perovskite solar cells; Wide-bandgap; DMAI; Phase separation;
D O I
10.1002/chem.202403527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High efficiency and stable wide-bandgap (WBG) perovskite solar cells (PSCs) are crucial for the development of perovskite-based tandem solar cells. However, the efficiency and stability of WBG PSCs are compromised by significant phase segregation and surface defects. In this study, we introduce a cation engineering strategy for WBG perovskite, employing a two-step sequential method that incorporates dimethylamine hydroiodide (DMAI) into the lead halide complex during the initial step. The addition of DMAI modifies the crystal structure and grain growth of the perovskite film, leading to improved crystal quality, reduced photo-induced halide segregation, decreased defect density, and enhanced charge carrier mobility. Consequently, we achieved a champion power conversion efficiency (PCE) of 21.9 % for 1.68 eV WBG PSCs. Furthermore, the stability of PSCs based on DMA-doped perovskite was significantly improved. After 1500 hours of exposure to ambient air, the unencapsulated device retained an impressive 80.6 % of its initial efficiency. This result highlights the substantial potential for stable and efficient WBG PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Compositional texture engineering for highly stable wide-bandgap perovskite solar cells
    Jiang, Qi
    Tong, Jinhui
    Scheidt, Rebecca A.
    Wang, Xiaoming
    Louks, Amy E.
    Xian, Yeming
    Tirawat, Robert
    Palmstrom, Axel F.
    Hautzinger, Matthew P.
    Harvey, Steven P.
    Johnston, Steve
    Schelhas, Laura T.
    Larson, Bryon W.
    Warren, Emily L.
    Beard, Matthew C.
    Berry, Joseph J.
    Yan, Yanfa
    Zhu, Kai
    SCIENCE, 2022, 378 (6626) : 1295 - 1300
  • [12] Improving the properties of MA-based wide-bandgap perovskite by simple precursor salts engineering for efficiency and ambient stability improvement in solar cells
    Matondo, Jadel Tsiba
    Malouangou, Maurice Davy
    Bai, Luyun
    Yang, Yifan
    Zhang, Yujing
    Mbumba, Manala Tabu
    Akram, Muhammad Waleed
    Guli, Mina
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [13] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [14] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [15] Grain Boundary Defect Passivation in Quadruple Cation Wide-Bandgap Perovskite Solar Cells
    Reza, Khan Mamun
    Gurung, Ashim
    Bahrami, Behzad
    Chowdhury, Ashraful Haider
    Ghimire, Nabin
    Pathak, Rajesh
    Rahman, Sheikh Ifatur
    Laskar, Md Ashiqur Rahman
    Chen, Ke
    Bobba, Raja Sekhar
    Lamsal, Buddhi Sagar
    Biswas, Liton Kumar
    Zhou, Yue
    Logue, Brian
    Qiao, Quinn
    SOLAR RRL, 2021, 5 (04)
  • [16] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [17] Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells
    Guang Yang
    Zhenyi Ni
    Zhengshan J. Yu
    Bryon W. Larson
    Zhenhua Yu
    Bo Chen
    Abdulwahab Alasfour
    Xun Xiao
    Joseph M. Luther
    Zachary C. Holman
    Jinsong Huang
    Nature Photonics, 2022, 16 : 588 - 594
  • [18] Surface Crystallization Enhancement and Defect Passivation for Efficiency and Stability Enhancement of Inverted Wide-Bandgap Perovskite Solar Cells
    Dong, Zhuo
    Men, Jiao
    Wang, Jiajun
    Huang, Zhengguo
    Zhai, Zeyu
    Wang, Yuwen
    Xie, Xiaoying
    Zhang, Chenxi
    Lin, Yuan
    Wu, Jinpeng
    Zhang, Jingbo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) : 20661 - 20669
  • [19] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [20] Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells
    Bingbing Chen
    Pengyang Wang
    Ningyu Ren
    Renjie Li
    Ying Zhao
    Xiaodan Zhang
    Journal of Semiconductors, 2022, 43 (05) : 93 - 107