Gut microbiota of miR-30a-5p-deleted mice aggravate high-fat diet-induced hepatic steatosis by regulating arachidonic acid metabolic pathway

被引:1
|
作者
Wang, Ruiying [1 ,2 ]
Zhang, Xiaocheng [1 ]
Wang, Yutian [3 ]
Lin, Yijun [1 ,2 ]
Zhou, Yuling [1 ,2 ]
Wang, Yan [1 ,2 ]
Li, Gang [1 ,2 ]
机构
[1] Xiamen Univ, Xiamen Cardiovasc Hosp, Sch Med, Xiamen 361000, Fujian, Peoples R China
[2] Xiamen Univ, Xiamen Key Lab Cardiovasc Dis, Xiamen Cardiovasc Hosp, Xiamen, Fujian, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Cardiol, Guangzhou, Guangdong, Peoples R China
来源
CLINICAL AND TRANSLATIONAL MEDICINE | 2024年 / 14卷 / 10期
基金
中国国家自然科学基金;
关键词
arachidonic acid metabolism; COX/LOX pathways; gut microbiota; hepatic steatosis; miR-30a-5p; OVEREXPRESSION; INHIBITION; DISEASE; SERVES; INJURY;
D O I
10.1002/ctm2.70035
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundPatients with non-alcoholic fatty liver disease (NAFLD) often exhibit hepatic steatosis and dyslipidemia. Studies have shown that intestinal microorganisms are closely related to the occurrence of NAFLD and atherosclerosis. Our previous study has underscored the protective role of microRNA-30a-5p (miR-30a-5p) against atherosclerosis.Methods and ResultsIn the present study, we aimed to elucidate the effect and underlying mechanism of the intestinal microorganisms of miR-30a-5p knockout (KO) mice on NAFLD. Our findings demonstrated that KO exacerbated high-fat diet (HFD)-induced hepatic steatosis and disrupted liver function, as evidenced by elevated levels of total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, and total bile acids in serum. Fecal microbiota from HFD-fed KO mice induced hepatic steatosis, dyslipidemia, and higher levels of enzymes indicative of liver damage in wild-type mice. Remarkably, KO mice significantly intensified the above effects. 16s rDNA sequencing and metabolomics of the intestinal microbiota in the HFD-treated KO and WT mice showed that the loss of miR-30a-5p resulted in intestinal microbiota imbalance and was highly related to the arachidonic acid metabolic pathway. Targeted metabolomic in the liver tissues unveiled upregulation of COX-related (PGF2a, 8-iso-PGF2a and PGF2) and LOX-related (LTB4, LTD4, 12S-HETE and 15S-HETE) factors in HFD-treated KO mice. Immunohistochemistry and transcriptional analyses showed that miR-30a-5p affected arachidonic acid metabolism through the LOX/COX pathways. Besides, COX/LOX pathways and hepatic steatosis were reversed after reintroducing miR-30a-5p in HFD-treated KO mice.ConclusionsThis study reveals the pivotal mechanism by which miR-30a-5p and intestinal microbes regulate hepatic steatosis and abnormal lipid metabolism, offering promising avenues for NAFLD and atherosclerosis therapeutics.HighlightsMiR-30a-5p deletion aggravated hepatic steatosis and lipid disorder induced by an HFD in mice. Gut microbiota participated in the regulation of hepatic steatosis in the context of miR-30a-5p. Gut microbiota metabolism-related arachidonic acid metabolic pathway contributed to miR-30a-5p-regulated hepatic steatosis and lipid disorder. Reintroducing miR-30a-5p reversed hepatic steatosis and arachidonic acid metabolism disorder caused by HFD and miR-30a-5p deletion. image
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice
    Li, Deming
    Cui, Yuan
    Wang, Xinjing
    Liu, Fang
    Li, Xinli
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (24) : 6829 - 6841
  • [12] Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet-Induced Hepatic Steatosis in Mice
    Huck, Ian
    Beggs, Kevin
    Apte, Udayan
    INTERNATIONAL JOURNAL OF TOXICOLOGY, 2018, 37 (05) : 383 - 392
  • [13] Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice
    Yang, Youjun
    Zhong, Zhanqiong
    Wang, Baojia
    Wang, Yili
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 156
  • [14] Parboiled rice supplementation alleviates high-fat diet-induced hyperlipidemia by regulating genes and gut microbiota in mice
    Wu, Xiuxiu
    Guo, Tianyi
    Li, Biao
    Han, Shuai
    Hu, Zuomin
    Luo, Yi
    Qin, Dandan
    Zhou, Yaping
    Luo, Feijun
    Lin, Qinlu
    FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (03) : 1422 - 1438
  • [15] Mulberry leaf extract ameliorates high-fat diet-induced obesity in mice by regulating the gut microbiota and metabolites
    Pan, Ya
    Song, Yishan
    Zhao, Minjie
    Yang, Mengyu
    Xiao, Nanhai
    Wang, Jing
    Feng, Fengqin
    FOOD BIOSCIENCE, 2024, 62
  • [16] Parboiled rice supplementation alleviates high-fat diet-induced hyperlipidemia by regulating genes and gut microbiota in mice
    Xiuxiu Wu
    Tianyi Guo
    Biao Li
    Shuai Han
    Zuomin Hu
    Yi Luo
    Dandan Qin
    Yaping Zhou
    Feijun Luo
    Qinlu Lin
    FoodScienceandHumanWellness, 2024, 13 (03) : 1422 - 1438
  • [17] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [18] Gochujang Ameliorates Hepatic Inflammation by Improving Dysbiosis of Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Lee, Eun-Ji
    Edward, Olivet Chiamaka
    Seo, Eun-Bi
    Mun, Eun-Gyung
    Jeong, Su-Ji
    Ha, Gwangsu
    Han, Anna
    Cha, Youn-Soo
    MICROORGANISMS, 2023, 11 (04)
  • [19] Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Yang, Ching-Wei
    Liu, Hsuan-Miao
    Chang, Zi-Yu
    Liu, Geng-Hao
    Chang, Hen-Hong
    Huang, Po-Yu
    Lee, Tzung-Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [20] Whole Eggs Improve High-Fat Diet-Induced Disorders of the Hepatic Lipid Profile and Gut Microbiota in Mice
    Yu, Zhihui
    Yu, Danrong
    Dang, Huichao
    Zhang, Lixin
    Zhang, Xiaoyu
    Wang, Shiyao
    Chen, Yisheng
    ACS FOOD SCIENCE & TECHNOLOGY, 2022, 2 (10): : 1650 - 1661