Learning to Train and to Explain a Deep Survival Model with Large-Scale Ovarian Cancer Transcriptomic Data

被引:0
|
作者
Menand, Elena Spirina [1 ,2 ]
De Vries-Brilland, Manon [2 ,3 ]
Tessier, Leslie [2 ]
Dauve, Jonathan [2 ]
Campone, Mario [4 ,5 ]
Verriele, Veronique [6 ]
Jrad, Nisrine [1 ]
Marion, Jean-Marie [1 ]
Chauvet, Pierre [1 ]
Passot, Christophe [2 ]
Morel, Alain [2 ,5 ]
机构
[1] Univ Angers, Lab Angevin Rech Ingn Syst EA7315, F-49035 Angers, France
[2] Inst Cancerol Ouest Nantes Angers, Unite Genom Fonct, F-49055 Angers, France
[3] Inst Cancerol Ouest Nantes Angers, F-49000 Angers, France
[4] Inst Cancerol Ouest Nantes Angers, F-49000 Angers, France
[5] Nantes Univ, Univ Angers, CNRS, Inserm,CRCI2NA,SFR ICAT, F-49000 Angers, France
[6] Inst Cancerol Ouest Nantes Angers, Dept Anat & Cytol Pathol, F-49055 Angers, France
关键词
TCGA; ovarian cancer; RNA-seq; survival analysis; deep learning; molecular pathways; SIGNATURES;
D O I
10.3390/biomedicines12122881
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background/Objectives: Ovarian cancer is a complex disease with poor outcomes that affects women worldwide. The lack of successful therapeutic options for this malignancy has led to the need to identify novel biomarkers for patient stratification. Here, we aim to develop the outcome predictors based on the gene expression data as they may serve to identify categories of patients who are more likely to respond to certain therapies. Methods: We used The Cancer Genome Atlas (TCGA) ovarian cancer transcriptomic data from 372 patients and approximately 16,600 genes to train and evaluate the deep learning survival models. In addition, we collected an in-house validation dataset of 12 patients to assess the performance of the trained survival models for their direct use in clinical practice. Despite deceptive generalization capabilities, we demonstrated how our model can be interpreted to uncover biological processes associated with survival. We calculated the contributions of the input genes to the output of the best trained model and derived the corresponding molecular pathways. Results: These pathways allowed us to stratify the TCGA patients into high-risk and low-risk groups (p-value 0.025). We validated the stratification ability of the identified pathways on the in-house dataset consisting of 12 patients (p-value 0.229) and on the external clinical and molecular dataset consisting of 274 patients (p-value 0.006). Conclusions: The deep learning-based models for survival prediction with RNA-seq data could be used to detect and interpret the gene-sets associated with survival in ovarian cancer patients and open a new avenue for future research.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training
    Zhao, Mark
    Agarwal, Niket
    Basant, Aarti
    Gedik, Bugra
    Pan, Satadru
    Ozdal, Mustafa
    Komuravelli, Rakesh
    Pan, Jerry
    Bao, Tianshu
    Lu, Haowei
    Narayanan, Sundaram
    Langman, Jack
    Wilfong, Kevin
    Rastogi, Harsha
    Wu, Carole-Jean
    Kozyrakis, Christos
    Pol, Parik
    PROCEEDINGS OF THE 2022 THE 49TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '22), 2022, : 1042 - 1057
  • [32] Large-scale profiling of metabolic dysregulation in ovarian cancer
    Ke, Chaofu
    Hou, Yan
    Zhang, Haiyu
    Fan, Lijun
    Ge, Tingting
    Guo, Bing
    Zhang, Fan
    Yang, Kai
    Wang, Jingtao
    Lou, Ge
    Li, Kang
    INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (03) : 516 - 526
  • [33] Machine learning based survival prediction in Glioma using large-scale registry data
    Zhao, Rachel
    Zhuge, Ying
    Camphausen, Kevin
    Krauze, Andra, V
    HEALTH INFORMATICS JOURNAL, 2022, 28 (04)
  • [34] Deep Reinforcement Learning for Large-Scale Epidemic Control
    Libin, Pieter J. K.
    Moonens, Arno
    Verstraeten, Timothy
    Perez-Sanjines, Fabian
    Hens, Niel
    Lemey, Philippe
    Nowe, Ann
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2020, PT V, 2021, 12461 : 155 - 170
  • [35] Deep learning large-scale drug discovery and repurposing
    Yu, Min
    Li, Weiming
    Yu, Yunru
    Zhao, Yu
    Xiao, Lizhi
    Lauschke, Volker M.
    Cheng, Yiyu
    Zhang, Xingcai
    Wang, Yi
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (08): : 600 - 614
  • [36] HammingMesh: A Network Topology for Large-Scale Deep Learning
    Hoefler, Torsten
    Bonato, Tommaso
    De Sensi, Daniele
    Di Girolamo, Salvatore
    Li, Shigang
    Heddes, Marco
    Belk, Jon
    Goel, Deepak
    Castro, Miguel
    Scott, Steve
    SC22: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2022,
  • [37] HammingMesh: A Network Topology for Large-Scale Deep Learning
    Hoefler, Torsten
    Bonoto, Tommaso
    De Sensi, Daniele
    Di Girolamo, Salvatore
    Li, Shigang
    Heddes, Marco
    Goel, Deepak
    Castro, Miguel
    Scott, Steve
    COMMUNICATIONS OF THE ACM, 2024, 67 (12) : 97 - 105
  • [38] On Efficient Training of Large-Scale Deep Learning Models
    Shen, Li
    Sun, Yan
    Yu, Zhiyuan
    Ding, Liang
    Tian, Xinmei
    Tao, Dacheng
    ACM COMPUTING SURVEYS, 2025, 57 (03)
  • [39] Deep learning based data augmentation for large-scale mineral image recognition and classification
    Liu, Yang
    Wang, Xueyi
    Zhang, Zelin
    Deng, Fang
    MINERALS ENGINEERING, 2023, 204
  • [40] Deep Learning-Based Sentimental Analysis for Large-Scale Imbalanced Twitter Data
    Jamal, Nasir
    Chen, Xianqiao
    Aldabbas, Hamza
    FUTURE INTERNET, 2019, 11 (09)