Towards automated joint detection and RQD estimation in acoustic televiewer imaging using deep learning (instance segmentation)

被引:0
|
作者
Houshmand, Negin [1 ]
Esmaeili, Kamran [1 ]
Goodfellow, Sebastian [1 ]
机构
[1] Univ Toronto, Dept Civil & Mineral Engn, Toronto, ON, Canada
来源
GEOENERGY SCIENCE AND ENGINEERING | 2025年 / 247卷
基金
加拿大自然科学与工程研究理事会;
关键词
Instance segmentation; Deep learning; Acoustic televiewer; Borehole imaging; RQD; Joint orientation; BOREHOLE; FEATURES;
D O I
10.1016/j.geoen.2025.213730
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A thorough understanding of rock mass structural complexity is essential for geotechnical design and analysis of surface and underground excavations in rock. Borehole imaging is commonly used to rapidly and accurately characterize fractures without handling core specimens. Acoustic televiewer (ATV) imaging is an effective tool for detecting structural fractures and determining Rock Quality Designation (RQD) along a borehole. As part of interpreting the ATV data, the logger typically detects and identifies joints manually. This is a time-consuming, subjective, and inconsistent process. This study introduces a method that can automate joint detection, joint orientation (alpha and beta angles), and RQD estimation. For this study, a total of 1390 m of ATV data, including 1847 joints, were collected from 24 boreholes. In the first step, several filtering techniques were used, including Canny, Laplacian of Gaussian, K-Means, Multiple thresholding, Hough transform, and watershed segmentation for automated joint segmentation. In comparison, watershed segmentation outperforms other techniques, but it is sensitive to noise and outbreaks present in some of the ATV images. As a result, a deep learning algorithm called Mask R-CNN was used. This approach is an instance segmentation method that showed promising results with an F1-score of 0.82 in automated joint detection on an unseen test dataset. Based on the model, the mean absolute errors of alpha and beta angles and the RQD calculated by the model are 1.4o, 20.1o, and 1%, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Image Augmentation Approaches for Building Dimension Estimation in Street View Images Using Object Detection and Instance Segmentation Based on Deep Learning
    Hwang, Dongjin
    Kim, Jae-Jun
    Moon, Sungkon
    Wang, Seunghyeon
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [22] Automated production of synthetic point clouds of truss bridges for semantic and instance segmentation using deep learning models
    Lamas, Daniel
    Justo, Andres
    Soilan, Mario
    Riveiro, Belen
    AUTOMATION IN CONSTRUCTION, 2024, 158
  • [23] ISOODL: INSTANCE SEGMENTATION OF OVERLAPPING BIOLOGICAL OBJECTS USING DEEP LEARNING
    Boehm, Anton
    Uecker, Annekathrin
    Jaeger, Tim
    Ronneberger, Olaf
    Falk, Thorsten
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1225 - 1229
  • [24] Deep Learning based Food Instance Segmentation using Synthetic Data
    Park, Deokhwan
    Lee, Joosoon
    Lee, Junseok
    Lee, Kyoobin
    2021 18TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2021, : 499 - 505
  • [25] Fish Detection and Tracking in Pisciculture Environment using Deep Instance Segmentation
    Arvind, C. S.
    Prajwal, R.
    Bhat, Prithvi Narayana
    Sreedevi, A.
    Prabhudeva, K. N.
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 778 - 783
  • [26] Identifying Surgical Instruments in Laparoscopy Using Deep Learning Instance Segmentation
    Kletz, Sabrina
    Schoeffmann, Klaus
    Benois-Pineau, Jenny
    Husslein, Heinrich
    2019 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2019,
  • [27] Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning
    Shota Ito
    Yuichi Mine
    Yuki Yoshimi
    Saori Takeda
    Akari Tanaka
    Azusa Onishi
    Tzu-Yu Peng
    Takashi Nakamoto
    Toshikazu Nagasaki
    Naoya Kakimoto
    Takeshi Murayama
    Kotaro Tanimoto
    Scientific Reports, 12
  • [28] Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection
    Fatima, Anum
    Shafi, Imran
    Afzal, Hammad
    Mahmood, Khawar
    Diez, Isabel de la Torre
    Lipari, Vivian
    Ballester, Julien Brito
    Ashraf, Imran
    HEALTHCARE, 2023, 11 (03)
  • [29] Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning
    Ito, Shota
    Mine, Yuichi
    Yoshimi, Yuki
    Takeda, Saori
    Tanaka, Akari
    Onishi, Azusa
    Peng, Tzu-Yu
    Nakamoto, Takashi
    Nagasaki, Toshikazu
    Kakimoto, Naoya
    Murayama, Takeshi
    Tanimoto, Kotaro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [30] Chassis Assembly Detection and Identification Based on Deep Learning Component Instance Segmentation
    Liu, Guixiong
    He, Binyuan
    Liu, Siyuang
    Huang, Jian
    SYMMETRY-BASEL, 2019, 11 (08):