Machine Learning for Lattice QCD

被引:0
|
作者
Tomiya, Akio [1 ]
机构
[1] Tokyo Womans Christian Univ, Tokyo, Tokyo 1678585, Japan
关键词
D O I
10.7566/JPSJ.94.031006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this review, we explore the application of machine learning (ML) to lattice quantum chromodynamics (QCD), a key tool in studying nonperturbative phenomena in particle physics. By integrating ML techniques such as neural networks, lattice QCD simulations are significantly enhanced, enabling challenges like critical slowing down and topological charge to be addressed. These methods reduce computational costs and improve accuracy in configuration generation and physical measurements. Despite concerns over the black-box nature of ML, its application shows great promise in advancing lattice QCD research beyond traditional methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Predictive lattice QCD
    Kronfeld, AS
    Allison, IF
    Aubin, C
    Bernard, C
    Davies, CTH
    Detar, C
    Di Pierro, M
    Freeland, ED
    Gottlieb, S
    Gray, A
    Gregory, E
    Hellerk, UM
    Hetrick, JE
    El-Khadra, AX
    Levkova, L
    MacKenzie, PB
    Maresca, F
    Menscher, D
    Nobes, M
    Okamoto, M
    Oktay, MB
    Osborn, J
    Renner, D
    Simone, JN
    Sucar, R
    Toussaint, D
    Trottier, HD
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (04): : 713 - 719
  • [22] LATTICE QCD THERMODYNAMICS
    Fodor, Z.
    Katz, S. D.
    ACTA PHYSICA POLONICA B, 2011, 42 (12): : 2791 - 2810
  • [23] Localization in lattice QCD
    Golterman, M
    Shamir, Y
    PHYSICAL REVIEW D, 2003, 68 (07)
  • [24] Hadrons and lattice QCD
    Ukawa, A
    NUCLEAR PHYSICS A, 2003, 721 : 40C - 49C
  • [25] Progress in Lattice QCD
    Kuramashi, Yoshinobu
    35TH INTERNATIONAL CONFERENCE OF HIGH ENERGY PHYSICS (ICHEP 2010), 2010,
  • [26] Topology in lattice QCD
    Di Giacomo, A
    THEORY OF ELEMENTARY PARTICLES, 1998, : 213 - 220
  • [27] Lattice QCD Overview
    Pasztor, Attila
    30TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, QUARK MATTER 2023, 2024, 296
  • [28] Machine learning lattice constants for spinel compounds
    Zhang, Yun
    Xu, Xiaojie
    CHEMICAL PHYSICS LETTERS, 2020, 760
  • [29] Advanced lattice QCD
    Lüscher, M
    PROBING THE STANDARD MODEL OF PARTICLE INTERACTIONS, PARTS I AND II, 1999, 68 : 229 - 280
  • [30] QCD on an Infinite Lattice
    Hendrik Grundling
    Gerd Rudolph
    Communications in Mathematical Physics, 2013, 318 : 717 - 766