Joint transitivity for linear iterates

被引:0
|
作者
Donoso, Sebastian [1 ,2 ,3 ]
Koutsogiannis, Andreas [4 ]
Sun, Wenbo [5 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Beauchef 851, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Beauchef 851, Santiago, Chile
[3] CNRS, IRL 2807, Beauchef 851, Santiago, Chile
[4] Aristotle Univ Thessaloniki, Dept Math, Thessaloniki 54124, Greece
[5] Virginia Tech, Dept Math, 225 Stanger St, Blacksburg, VA 24061 USA
关键词
POLYNOMIAL AVERAGES; MULTIPLE RECURRENCE; ERGODIC AVERAGES; MINIMAL SYSTEMS; HARDY SEQUENCES; THEOREM; SZEMEREDI; PRODUCT;
D O I
10.1017/fms.2024.138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish sufficient and necessary conditions for the joint transitivity of linear iterates in a minimal topological dynamical system with commuting transformations. This result provides the first topological analogue of the classical Berend and Bergelson joint ergodicity criterion in measure-preserving systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] DEVELOPMENT OF TRANSITIVITY OF PREFERENCE - NOVELTY AND LINEAR REGULARITY
    BRADBURY, H
    MOSCATO, M
    JOURNAL OF GENETIC PSYCHOLOGY, 1982, 140 (02): : 265 - 281
  • [22] Transitivity of linear control systems on Lie groups
    Ayala, V.
    Hacibekiroglu, A. K.
    Kizil, E.
    Zegarra, L. R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 1999, 18 (02): : 247 - 255
  • [23] LINEAR TRANSITIVITY ON COMPACT CONNECTED HYPERSPACE DYNAMICS
    Wu, Yuhu
    Xue, Xiaoping
    Ji, Donghai
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (04): : 523 - 534
  • [24] MODELING HIERARCHY - TRANSITIVITY AND THE LINEAR ORDERING PROBLEM
    ROBERTS, JM
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 1990, 16 (01): : 77 - 87
  • [26] QUESTIONS OF TRANSITIVITY REGARDING LINEAR-GROUPS
    VOLKLEIN, H
    JOURNAL OF ALGEBRA, 1982, 78 (02) : 341 - 356
  • [27] LINEAR INDEPENDENCE OF ITERATES AND ENTIRE SOLUTIONS OF FUNCTIONAL-EQUATIONS
    CHRISTENSEN, JPR
    FISCHER, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (04) : 1120 - 1124
  • [28] Estimates related to the iterates of positive linear operators and their multidimensional analogues
    Agratini, Octavian
    Precup, Radu
    POSITIVITY, 2024, 28 (02)
  • [29] Monotone continuous solutions of an equation in linear combination of alternative iterates
    Chen, Yeming
    Zeng, Yingying
    Zhang, Weinian
    Zhou, Linfeng
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023,
  • [30] New Rates of Convergence for the Iterates of Some Positive Linear Operators
    Marius Mihai Birou
    Mediterranean Journal of Mathematics, 2017, 14