Application of lightweight YOLOv8n networks for insulator defect detection

被引:0
|
作者
Ma, Fulin [1 ]
Gao, Zhengzhong [1 ]
Chai, Xinbin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao, Peoples R China
[2] Wenshang Yiqiao Coal Mine Co Ltd, Jining, Peoples R China
关键词
machine vision; deep learning; insulator defect detection; YOLOv8n;
D O I
10.1109/RAIIC61787.2024.10671114
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problems of small insulator defect targets and complex background information in transmission lines, as well as the difficulty of edge-end devices to meet real-time detection requirements, a lightweight insulator defect detection algorithm based on YOLOv8n is proposed. The backbone network of YOLOv8n is reconstructed by introducing a lightweight bottleneck structure, GhostNetV2 BottleNeck, which reduces the number of network parameters and improves the detection speed of the model, and the CBAM attention mechanism is embedded in the backbone network, which improves the ability of the network to extract the target features, and thus improves the detection accuracy of the model. By validating the improved algorithmic model on the insulator dataset, the results show that the mean average accuracy of the improved algorithmic model reaches 85.7%, and the detection speed reaches 171.4 frames/s, which verifies the effectiveness of the improved algorithmic model for the detection of insulators and their defects.
引用
收藏
页码:198 / 201
页数:4
相关论文
共 50 条
  • [31] Rapid adaptation in photovoltaic defect detection: Integrating CLIP with YOLOv8n for efficient learning
    Saeed, Fahman
    Aldera, Sultan
    Al-Shamma'a, Abdullrahman A.
    Farh, Hassan M. Hussein
    ENERGY REPORTS, 2024, 12 : 5383 - 5395
  • [32] Power Adapter Appearance Defect Detection Based on Task Feature Decoupling YOLOv8n
    Chen, Jie
    Xie, Yu
    Qian, Zhengwei
    Chen, Keqiong
    Zhen, Maofa
    Hu, Xueyou
    IEEE ACCESS, 2024, 12 : 60070 - 60080
  • [33] Infrared image detection of defects in lightweight solar panels based on improved MSRCR and YOLOv8n
    Hong, Yan
    Pan, Ruixian
    Su, Jingming
    Li, Mushi
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141
  • [34] Lightweight coal mine conveyor belt foreign object detection based on improved Yolov8n
    Jierui Ling
    Zhibo Fu
    Xinpeng Yuan
    Scientific Reports, 15 (1)
  • [35] Lightweight Sewer Pipe Crack Detection Method Based on Amphibious Robot and Improved YOLOv8n
    Lv, Zhenming
    Dong, Shaojiang
    He, Jingyao
    Hu, Bo
    Liu, Qingyi
    Wang, Honghang
    SENSORS, 2024, 24 (18)
  • [36] MW-YOLO: Improved YOLOv8n for Lightweight Dense Vehicle Object Detection Algorithm
    Zhou, Wanzhen
    Wang, Junjie
    Song, Yufei
    Zhang, Xiaoran
    Liu, Zhiguo
    Ma, Yupeng
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 28 - 35
  • [37] Improved Peanut Quality Detection Method of YOLOv8n
    Huang, Yinglai
    Niu, Dawei
    Hou, Chang
    Yang, Liusong
    Computer Engineering and Applications, 2024, 60 (23) : 257 - 267
  • [38] Improved Road Object Detection Algorithm for YOLOv8n
    Gao, Deyong
    Chen, Taida
    Miao, Lan
    Computer Engineering and Applications, 2024, 60 (16) : 186 - 197
  • [39] Research on Bubble Detection Based on Improved YOLOv8n
    Chen, Tingting
    Zeng, Qingzhu
    IEEE ACCESS, 2024, 12 : 9659 - 9668
  • [40] Improved YOLOv8n object detection of fragrant pears
    Tan H.
    Ma W.
    Tian Y.
    Zhang Q.
    Li M.
    Li M.
    Yang X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (11): : 178 - 185