Application of lightweight YOLOv8n networks for insulator defect detection

被引:0
|
作者
Ma, Fulin [1 ]
Gao, Zhengzhong [1 ]
Chai, Xinbin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao, Peoples R China
[2] Wenshang Yiqiao Coal Mine Co Ltd, Jining, Peoples R China
关键词
machine vision; deep learning; insulator defect detection; YOLOv8n;
D O I
10.1109/RAIIC61787.2024.10671114
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the problems of small insulator defect targets and complex background information in transmission lines, as well as the difficulty of edge-end devices to meet real-time detection requirements, a lightweight insulator defect detection algorithm based on YOLOv8n is proposed. The backbone network of YOLOv8n is reconstructed by introducing a lightweight bottleneck structure, GhostNetV2 BottleNeck, which reduces the number of network parameters and improves the detection speed of the model, and the CBAM attention mechanism is embedded in the backbone network, which improves the ability of the network to extract the target features, and thus improves the detection accuracy of the model. By validating the improved algorithmic model on the insulator dataset, the results show that the mean average accuracy of the improved algorithmic model reaches 85.7%, and the detection speed reaches 171.4 frames/s, which verifies the effectiveness of the improved algorithmic model for the detection of insulators and their defects.
引用
收藏
页码:198 / 201
页数:4
相关论文
共 50 条
  • [1] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [2] Fabric Defect Detection Based on Improved Lightweight YOLOv8n
    Ma, Shuangbao
    Liu, Yuna
    Zhang, Yapeng
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [3] Improved YOLOv8n for Lightweight Ship Detection
    Gao, Zhiguang
    Yu, Xiaoyan
    Rong, Xianwei
    Wang, Wenqi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [4] Improved YOLOv8n Lightweight Honeycomb Ceramic Defect- Detection Algorithm
    Hu, Haining
    Huang, Leiyang
    Yang, Honggang
    Chen, Yunxia
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [5] Detection of Traffic Signs Based on Lightweight YOLOv8n
    Liu, Shihong
    Li, Shiwei
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1200 - 1204
  • [6] PCB Surface Defect Detection based on YOLOv8n
    You, Rui
    Wang, Zhifeng
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2017 - 2025
  • [7] LightYOLO: Lightweight model based on YOLOv8n for defect detection of ultrasonically welded wire terminations
    Xu, Jianshu
    Zhao, Lun
    Ren, Yu
    Li, Zhigang
    Abbas, Zeshan
    Zhang, Lan
    Islam, Shafiqul
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 60
  • [8] Improved lightweight flame smoke detection algorithm for YOLOv8n
    Zhang, Yu
    Xiao, Xia
    Wang, Weiling
    Wang, Chunyu
    Jin, Xin
    Wang, Yue
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1544 - 1549
  • [9] Lightweight GCP-YOLOv8s for Insulator Defect Detection
    Huang, Fuzhen
    Wang, Tianci
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (02)
  • [10] PAL-YOLOv8: A Lightweight Algorithm for Insulator Defect Detection
    Zhang, Du
    Cao, Kerang
    Han, Kai
    Kim, Changsu
    Jung, Hoekyung
    ELECTRONICS, 2024, 13 (17)