Applicability of van der Waals density functionals in the calculation of materials properties applied to ferroelectrics

被引:0
|
作者
Cardona-Quintero, Yenny [1 ]
Perez-Moyet, Richard [1 ]
机构
[1] Naval Undersea Warfare Ctr, Sensors & Sonar Syst Dept, Newport, RI 02841 USA
关键词
atomic structure; density functional theory; ferroelectricity/ferroelectric materials; strain; GENERALIZED GRADIENT APPROXIMATION; NEUTRON-DIFFRACTION; 4; PHASES; 1ST-PRINCIPLES; DFT; PSEUDOPOTENTIALS; ADSORPTION; PBTIO3;
D O I
10.1111/jace.20467
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The applicability of van der Waals density functionals in the calculation of materials properties of normal and relaxor ferroelectric materials is explored using density functional theory (DFT). The accuracy in the calculation of structural, mechanical, and electronic properties of BaTiO3 (BT), PbTiO3 (PT), and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) are investigated using different DFT exchange-correlation (XC) functionals including various forms of the van der Waals density functionals such as vdW-DF-C09, vdW-DF-cx, and vdW-DF-ob86, as well as the LDA, PBE, and PBEsol functionals for comparison. In general, the results obtained indicate that the van der Waals density functionals vdW-DF-C09 and vdW-DF-cx provide an overall better description when considering the full spectrum of the structural, mechanical, and electronic properties of BT, PT, and PMN-PT in their different crystal phases. The improved performance in materials properties was rationalized by the behavior of the enhancement factor in the small regime of the reduced gradient observed with the van der Waals density functionals. Additionally, the applicability of the vdW-DF-C09 functional in the calculation of the structural and electronic properties of BT under different types of strain is described, indicating a clear structure-property correspondence between the displacement of the Ti atom and the change in the magnitude of polarization.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Spontaneous polarization in van der Waals materials: Two-dimensional ferroelectrics and device applications
    Lai, Keji
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (12)
  • [32] Ductile van der Waals materials
    Han, Xiaodong
    SCIENCE, 2020, 369 (6503) : 509 - 509
  • [33] Establishing the morphotropic phase boundary in van der Waals ferroelectrics
    Deng, Jianming
    Fu, Zhengqian
    Zhang, Yixuan
    Kang, Jiaqian
    Gong, Weiping
    Li, Qiang
    Zhou, Xiaodong
    Wang, Wenbin
    Hong, Jiawang
    Cheong, Sang-Wook
    Wang, Xueyun
    2D MATERIALS, 2024, 11 (03):
  • [34] Towards two-dimensional van der Waals ferroelectrics
    Chuanshou Wang
    Lu You
    David Cobden
    Junling Wang
    Nature Materials, 2023, 22 : 542 - 552
  • [35] The rise of two-dimensional van der Waals ferroelectrics
    Wu, Menghao
    Jena, Puru
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (05)
  • [36] Towards two-dimensional van der Waals ferroelectrics
    Wang, Chuanshou
    You, Lu
    Cobden, David
    Wang, Junling
    NATURE MATERIALS, 2023, 22 (05) : 542 - 552
  • [37] Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals
    Brown-Altvater, Florian
    Rangel, Tonatiuh
    Neaton, Jeffrey B.
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [38] Implicit density functionals for the exchange-correlation energy: Description of van der Waals bonds
    Engel, E
    Bonetti, AF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1703 - 1713
  • [39] REMARKS ON CALCULATION OF VAN DER WAALS ENERGY
    EPSTEIN, ST
    JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (12): : 4398 - &
  • [40] Note on the calculation of van der Waals forces
    Margenau, H
    PHYSICAL REVIEW, 1931, 37 (11): : 1425 - 1430