Bearing Fault Diagnosis Based On Binary Harris Hawk Optimization And Extreme Learning Machine

被引:0
|
作者
Souaidia, Chouaib [1 ]
Ayeb, Brahim [1 ]
Fares, Abderraouf [2 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Elect Engn Dept, LABGET Lab, Tebessa, Algeria
[2] Badji Mokhtar Univ, Dept Elect, LERICA Lab, Annaba, Algeria
关键词
Bearing Fault Diagnosis; Feature Extraction; Feature Selection; Binary Harris Hawk Optimization; Artificial Neural Networks; Extreme Learning Machines; CLASSIFICATION; SYSTEMS;
D O I
10.1109/ICEEAC61226.2024.10576259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rolling bearings are one of the most crucial parts of rotating machinery. Finding bearing defects early on might help to avoid impacting the overall operation of the manufacturing system. Machine learning for bearing failure Identification has recently become a particularly attractive topic due to its methods, which do not require a large amount of training data, as well as the fact that the collection of vibration data is typically the initial point of inquiry. A variety of defected bearing datasets have been published and are available. "The Case Western Reserve University's Bearing Center" is the most extensively utilized public dataset. In this research, a new methodology has been suggested using binary Harris Hawk optimization and extreme learning machines for bearing fault identification. First, the feature extraction has been retrieved from the bearing vibration signals. Following that, a strong feature selection approach is presented and used to remove irrelevant and redundant features using binary Harris Hawk optimization. Finally, artificial neural networks and extreme learning machines are used separately as classifiers. The results demonstrate that the suggested approach of binary Harris Hawk optimization and extreme learning machines has achieved 98.8% bearing defect diagnostic accuracy. The findings reveal that this approach has the benefits of bearing defect diagnostic accuracy and stability.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Fault diagnosis for wind turbine based on improved extreme learning machine
    Wu B.
    Xi L.
    Fan S.
    Zhan J.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (4) : 466 - 473
  • [32] Fault Diagnosis of Fuel System Based on Improved Extreme Learning Machine
    Hairui Wang
    Wanting Jing
    Ya Li
    Hongwei Yang
    Neural Processing Letters, 2021, 53 : 2553 - 2565
  • [33] Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine
    吴斌
    奚立峰
    范思遐
    占健
    JournalofShanghaiJiaotongUniversity(Science), 2017, 22 (04) : 466 - 473
  • [34] A Bearing Fault Diagnosis Method Based on Wavelet Denoising and Machine Learning
    Fu, Shaokun
    Wu, Yize
    Wang, Rundong
    Mao, Mingzhi
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [35] A New Quadratic Binary Harris Hawk Optimization for Feature Selection
    Too, Jingwei
    Abdullah, Abdul Rahim
    Saad, Norhashimah Mohd
    ELECTRONICS, 2019, 8 (10)
  • [36] Optimization of a Dynamic Fault Diagnosis Model Based on Machine Learning
    Zhang, Shigang
    Luo, Xu
    Yang, Yongmin
    Wang, Long
    Zhang, Xiaofei
    IEEE ACCESS, 2018, 6 : 65065 - 65077
  • [37] Transformer Fault Diagnosis Technology Based on Maximally Collapsing Metric Learning and Parameter Optimization Kernel Extreme Learning Machine
    Han, Xiaohui
    Ma, Shifeng
    Shi, Zhewen
    An, Guoqing
    Du, Zhenbin
    Zhao, Chunlin
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (05) : 665 - 673
  • [38] A Fault Diagnosis Method by Using Extreme Learning Machine
    Wang, Chunxia
    Wen, Chenglin
    Lu, Yang
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 318 - 322
  • [39] Flood mapping based on novel ensemble modeling involving the deep learning, Harris Hawk optimization algorithm and stacking based machine learning
    Costache, Romulus
    Pal, Subodh Chandra
    Pande, Chaitanya B.
    Islam, Abu Reza Md. Towfiqul
    Alshehri, Fahad
    Abdo, Hazem Ghassan
    APPLIED WATER SCIENCE, 2024, 14 (04)
  • [40] Flood mapping based on novel ensemble modeling involving the deep learning, Harris Hawk optimization algorithm and stacking based machine learning
    Romulus Costache
    Subodh Chandra Pal
    Chaitanya B. Pande
    Abu Reza Md. Towfiqul Islam
    Fahad Alshehri
    Hazem Ghassan Abdo
    Applied Water Science, 2024, 14