Bearing Fault Diagnosis Based On Binary Harris Hawk Optimization And Extreme Learning Machine

被引:0
|
作者
Souaidia, Chouaib [1 ]
Ayeb, Brahim [1 ]
Fares, Abderraouf [2 ]
机构
[1] Echahid Cheikh Larbi Tebessi Univ, Elect Engn Dept, LABGET Lab, Tebessa, Algeria
[2] Badji Mokhtar Univ, Dept Elect, LERICA Lab, Annaba, Algeria
关键词
Bearing Fault Diagnosis; Feature Extraction; Feature Selection; Binary Harris Hawk Optimization; Artificial Neural Networks; Extreme Learning Machines; CLASSIFICATION; SYSTEMS;
D O I
10.1109/ICEEAC61226.2024.10576259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rolling bearings are one of the most crucial parts of rotating machinery. Finding bearing defects early on might help to avoid impacting the overall operation of the manufacturing system. Machine learning for bearing failure Identification has recently become a particularly attractive topic due to its methods, which do not require a large amount of training data, as well as the fact that the collection of vibration data is typically the initial point of inquiry. A variety of defected bearing datasets have been published and are available. "The Case Western Reserve University's Bearing Center" is the most extensively utilized public dataset. In this research, a new methodology has been suggested using binary Harris Hawk optimization and extreme learning machines for bearing fault identification. First, the feature extraction has been retrieved from the bearing vibration signals. Following that, a strong feature selection approach is presented and used to remove irrelevant and redundant features using binary Harris Hawk optimization. Finally, artificial neural networks and extreme learning machines are used separately as classifiers. The results demonstrate that the suggested approach of binary Harris Hawk optimization and extreme learning machines has achieved 98.8% bearing defect diagnostic accuracy. The findings reveal that this approach has the benefits of bearing defect diagnostic accuracy and stability.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis
    Longkui Zheng
    Yang Xiang
    Chenxing Sheng
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [2] Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis
    Zheng, Longkui
    Xiang, Yang
    Sheng, Chenxing
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (11)
  • [3] An enhanced Harris hawk optimizer based on extreme learning machine for feature selection
    Abdullah Alzaqebah
    Omar Al-Kadi
    Ibrahim Aljarah
    Progress in Artificial Intelligence, 2023, 12 : 77 - 97
  • [4] An enhanced Harris hawk optimizer based on extreme learning machine for feature selection
    Alzaqebah, Abdullah
    Al-Kadi, Omar
    Aljarah, Ibrahim
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2023, 12 (01) : 77 - 97
  • [5] Bearing Fault Diagnosis Based on Extreme Machine Learning Optimized by Differential Evolution
    Hu, Yongtao
    Gao Jinfeng
    Zhou, Qiang
    Chen, Xiaoyu
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [6] Fault Diagnosis of Rolling Bearing Based on Permutation Entropy and Extreme Learning Machine
    Li, Yazhuo
    Wang, Xiaodong
    Wu, Jiande
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2966 - 2971
  • [7] Independent vector analysis based on binary grey wolf feature selection and extreme learning machine for bearing fault diagnosis
    Souaidia, Chouaib
    Thelaidjia, Tawfik
    Chenikher, Salah
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (06): : 7014 - 7036
  • [8] Independent vector analysis based on binary grey wolf feature selection and extreme learning machine for bearing fault diagnosis
    Chouaib Souaidia
    Tawfik Thelaidjia
    Salah Chenikher
    The Journal of Supercomputing, 2023, 79 : 7014 - 7036
  • [9] Landslide Displacement Prediction Using Kernel Extreme Learning Machine with Harris Hawk Optimization Based on Variational Mode Decomposition
    Wang, Chenhui
    Lin, Gaocong
    Zhou, Cuiqiong
    Guo, Wei
    Meng, Qingjia
    LAND, 2024, 13 (10)
  • [10] Study on Fault Diagnosis for Bearing Based on VMD-SVD and Extreme Learning Machine
    Zhou, Qiang
    Qin, Yong
    Wang, Zhipeng
    Jia, Limin
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES FOR RAIL TRANSPORTATION (EITRT) 2017: TRANSPORTATION, 2018, 483 : 87 - 97