On the minimal degree and base size of finite primitive groups

被引:0
|
作者
Mastrogiacomo, Fabio [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat Felice Casorati, Via Ferrata 5, I-27100 Pavia, Italy
关键词
Base size; minimal degree; primitive groups; almost simple; Lie group; PERMUTATION-GROUPS;
D O I
10.1142/S0219498826501057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite permutation group acting on Omega. A base for G is a subset B subset of Omega such that the pointwise stabilizer G(B) is the identity. The base size of G, denoted by b(G), is the cardinality of the smallest possible base. The minimal degree of G, denoted by mu(G), is the smallest cardinality of the support of a non-trivial element of G. In this paper, we establish a new upper bound for b(G) when G is primitive, and subsequently prove that if G is a primitive group different from the Mathieu group of degree 24, then mu(G)b(G) <= nlog n, where n is the degree of G. This bound is best possible, up to a multiplicative constant.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] The primitive permutation groups of squarefree degree
    Li, CH
    Seress, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 635 - 644
  • [22] τ-PRIMITIVE SUBGROUPS OF FINITE GROUPS
    Yang, N.
    Guo, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (03) : 560 - 566
  • [23] Finite primitive linear groups of prime degree (vol 57, pg 126, 1998)
    Dixon, J. D.
    Zalesskii, A. E.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 808 - 812
  • [25] Base sizes of primitive permutation groups
    Mariapia Moscatiello
    Colva M. Roney-Dougal
    Monatshefte für Mathematik, 2022, 198 : 411 - 443
  • [26] The largest character degree, conjugacy class size and subgroups of finite groups
    Qian, Guohua
    Yang, Yong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) : 2218 - 2226
  • [27] Base sizes of primitive permutation groups
    Moscatiello, Mariapia
    Roney-Dougal, Colva M.
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 411 - 443
  • [28] FINITE SIMPLE-GROUPS AND FINITE PRIMITIVE PERMUTATION-GROUPS
    PRAEGER, CE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (03) : 355 - 365
  • [29] Some primitive linear groups of prime degree
    Kang, Ming-chang
    Zhang, Ji-ping
    Shi, Jian-yi
    Yu, Yung
    Yau, Stephen S. T.
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2009, 61 (04) : 1013 - 1070
  • [30] Primitive unimodular groups of degree 2 as differential Galois groups
    Crespo, T
    Hajto, Z
    JOURNAL OF ALGEBRA, 2000, 229 (02) : 678 - 694