Hyperspectral Image Destriping and Denoising Via Stripe Unidirectional Gradient Low Rank and Non-convex Tensor Low-Tubal-Rank Priors

被引:0
|
作者
Long, Haijian [1 ]
Liu, Pengfei [2 ]
Zheng, Zhizhong [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Jiangsu Prov Engn Res Ctr Airborne Detecting & In, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral images; non-convex tensor low-tubal-rank prior; stripe vertical gradient low rank prior; RESTORATION;
D O I
10.1109/ICSIP61881.2024.10671493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a new hyperspectral image (HSI) destriping and denoising method via stripe unidirectional gradient low rank and non-convex tensor low-tubal-rank priors is proposed. Concretely, we propose the log tensor nuclear norm-based non-convex tensor low-tubal-rank prior to model the tensor low-tubal-rank property of HSI. Furthermore, we particularly propose the nuclear norm-based low rank prior of the unidirectional vertical gradient of stripe noise. Then, the alternating direction method of multipliers (ADMM) is used to solve the proposed model. Experimental results have demonstrated that the proposed method significantly outperforms various low rank-based HSI denoising methods.
引用
收藏
页码:742 / 746
页数:5
相关论文
共 50 条
  • [21] HYPERSPECTRAL IMAGE DENOISING VIA SPARSITY AND LOW RANK
    Zhao, Yongqiang
    Yang, Jinxiang
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1091 - 1094
  • [22] GENERALIZED DANTZIG SELECTOR FOR LOW-TUBAL-RANK TENSOR RECOVERY
    Wang, Andong
    Song, Xulin
    Wu, Xiyin
    Lai, Zhihui
    Jin, Zhong
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3427 - 3431
  • [23] ESTIMATING STRUCTURAL MISSING VALUES VIA LOW-TUBAL-RANK TENSOR COMPLETION
    Wang, Hailin
    Zhang, Feng
    Wang, Jianjun
    Wang, Yao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3297 - 3301
  • [24] Low-Tubal-Rank Tensor Completion Using Alternating Minimization
    Liu, Xiao-Yang
    Aeron, Shuchin
    Aggarwal, Vaneet
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1714 - 1737
  • [25] Generalized Nonconvex Approach for Low-Tubal-Rank Tensor Recovery
    Wang, Hailin
    Zhang, Feng
    Wang, Jianjun
    Huang, Tingwen
    Huang, Jianwen
    Liu, Xinling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3305 - 3319
  • [26] Bayesian Low-Tubal-Rank Robust Tensor Factorization with Multi-Rank Determination
    Zhou, Yang
    Cheung, Yiu-ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) : 62 - 76
  • [27] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhi Zhang
    Fang Yang
    EURASIP Journal on Advances in Signal Processing, 2022
  • [28] Hyperspectral Image Destriping and Denoising Using Stripe and Spectral Low-Rank Matrix Recovery and Graph Laplacian Regularization
    Chen, Xin
    Yang, Fang
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 481 - 486
  • [29] Hyperspectral image denoising and destriping based on sparse representation, graph Laplacian regularization and stripe low-rank property
    Zhang, Zhi
    Yang, Fang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [30] Hyperspectral Image Denoising: Reconciling Sparse and Low-Tensor-Ring-Rank Priors in the Transformed Domain
    Zhang, Hao
    Huang, Ting-Zhu
    Zhao, Xi-Le
    He, Wei
    Choi, Jae Kyu
    Zheng, Yu-Bang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61