Hyperspectral Image Destriping and Denoising Via Stripe Unidirectional Gradient Low Rank and Non-convex Tensor Low-Tubal-Rank Priors

被引:0
|
作者
Long, Haijian [1 ]
Liu, Pengfei [2 ]
Zheng, Zhizhong [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Jiangsu Prov Engn Res Ctr Airborne Detecting & In, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral images; non-convex tensor low-tubal-rank prior; stripe vertical gradient low rank prior; RESTORATION;
D O I
10.1109/ICSIP61881.2024.10671493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a new hyperspectral image (HSI) destriping and denoising method via stripe unidirectional gradient low rank and non-convex tensor low-tubal-rank priors is proposed. Concretely, we propose the log tensor nuclear norm-based non-convex tensor low-tubal-rank prior to model the tensor low-tubal-rank property of HSI. Furthermore, we particularly propose the nuclear norm-based low rank prior of the unidirectional vertical gradient of stripe noise. Then, the alternating direction method of multipliers (ADMM) is used to solve the proposed model. Experimental results have demonstrated that the proposed method significantly outperforms various low rank-based HSI denoising methods.
引用
收藏
页码:742 / 746
页数:5
相关论文
共 50 条
  • [1] Pansharpening via Double Nonconvex Tensor Low-Tubal-Rank Priors
    Liu, Pengfei
    Zheng, Zhizhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [2] Robust Low-Tubal-Rank Tensor Completion via Convex Optimization
    Jiang, Qiang
    Ng, Michael
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2649 - 2655
  • [3] Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
    Liu, Zhiyu
    Han, Zhi
    Tang, Yandong
    Zhao, Xi-Le
    Wang, Yao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 5470 - 5483
  • [4] HYPERSPECTRAL IMAGE DESTRIPING AND DENOISING WITH SPECTRAL LOW RANK AND TENSOR NUCLEAR NORM
    Liu, Pengfei
    Liu, Lanlan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7304 - 7307
  • [5] Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping
    Li, Dongyi
    Chu, Dong
    Guan, Xiaobin
    He, Wei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [6] Coherent Low-tubal-rank Tensor Completion
    Wang, Andong
    Jin, Zhong
    Li, Xiangrui
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 518 - 523
  • [7] ROBUST LOW-TUBAL-RANK TENSOR COMPLETION
    Wang, Andong
    Song, Xulin
    Wu, Xiyin
    Lai, Zhihui
    Jin, Zhong
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3432 - 3436
  • [8] NON-CONVEX RELAXATION LOW-RANK TENSOR COMPLETION FOR HYPERSPECTRAL IMAGE RECOVERY
    Li, Hanyang
    Liu, Hongyi
    Zhang, Jun
    Wu, Zebin
    Wei, Zhihui
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1935 - 1938
  • [9] Hyperspectral Image Recovery Using Non-Convex Low-Rank Tensor Approximation
    Liu, Hongyi
    Li, Hanyang
    Wu, Zebin
    Wei, Zhihui
    REMOTE SENSING, 2020, 12 (14)
  • [10] Noisy low-tubal-rank tensor completion
    Wang, Andong
    Lai, Zhihui
    Jin, Zhong
    NEUROCOMPUTING, 2019, 330 : 267 - 279