Complex network-based framework for flow pattern identification in vertical upward oil-water two-phase flow

被引:0
|
作者
Cui, Xiaofeng [1 ]
He, Yuling [1 ]
Li, Mengyu [2 ]
Cao, Weidong [3 ]
Gao, Zhongke [2 ]
机构
[1] North China Elect Power Univ, Sch Mech Engn, 619 Yonghua North St, Baoding 071003, Hebei, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
[3] Shengli Oilfield Co, Digitizat management & Serv Ctr, Sinopec, Dongying 257015, Shandong, Peoples R China
关键词
Mutual information; Complex networks; Flow pattern identification; Eight-electrode cyclic excitation conductivity; sensor; Time series analysis; Oil-water two-phase flow; COMMUNITY STRUCTURE; OPTIMIZATION;
D O I
10.1016/j.physa.2025.130351
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The investigation of oil-water two-phase flow in vertical pipelines holds significant research implications for a multitude of industrial applications, including oil production, chemical processing, and wastewater treatment. This research introduces a complex network-based framework for analyzing multi-node measurement signals from an eight-electrode cyclic excitation conductivity sensor, aimed at recognizing intricate flow patterns in vertical upward oil-water two-phase flow. Initially, experiments on vertical upward oil-water two-phase flow were conducted in a 20 mm diameter pipeline, where flow dynamics were recorded using the aforementioned sensor. During the experiments, flow patterns captured by a high-speed camera included dispersed oil-in-water slug flow (D OS/W), dispersed oil-in-water flow (D O/W), and very fine dispersed oil-in-water flow (VFD O/W). Subsequently, the multivariate pseudo-Wigner-Ville distribution time-frequency representation (PWVD TFR) was employed to characterize the flow behavior from both energy and frequency perspectives. Finally, the sensor's measurement nodes were treated as nodes in a network, and the mutual information between each time series was calculated to construct a complex network; network metrics were then computed to quantitatively characterize the network topology. The findings indicate that our method can effectively integrate multi-channel measurement signals and reveal the evolution of complex flow behaviors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Experimental studies on the measurement of oil-water two-phase flow
    Ma, Longbo
    Zhang, Hongjian
    Hua, Yuefang
    Zhou, Hongliang
    MULTIPHASE FLOW: THE ULTIMATE MEASUREMENT CHALLENGE, PROCEEDINGS, 2007, 914 : 600 - +
  • [42] Ultrasound Attenuation Characteristics in Oil-water Two-phase Flow
    Su, Qian
    Tan, Chao
    Dong, Feng
    2015 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2015, : 1179 - 1184
  • [43] Water Holdup Measurement of Oil-Water Two-phase Flow Based on KPLS Regression
    Wang, Nana
    Tan, Chao
    Dong, Feng
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 1896 - 1900
  • [44] Velocity Measurement of Oil-Water Two-Phase Flow Based on Ultrasonic Doppler
    Shi, Xuewei
    Dong, Xiaoxiao
    Tan, Chao
    Dong, Feng
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 82 - 87
  • [45] On the development of a two-phase flow meter for vertical upward flow in tubes
    Shim, WJ
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1997, 14 (06) : 528 - 532
  • [46] A Kalman estimation based oil-water two-phase flow measurement with CRCC
    Tan, Chao
    Dai, Wei
    Yeung, Hoi
    Dong, Feng
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 72 : 306 - 317
  • [47] Oil-water two-phase flow measurement based on kalman estimation fusion
    Tan, Chao, 1600, Tianjin University (47):
  • [48] On the development of a two-phase flow meter for vertical upward flow in tubes
    W. Jaewoo Shim
    Korean Journal of Chemical Engineering, 1997, 14 : 528 - 532
  • [49] Flow pattern observations and flow pattern map for adiabatic two-phase flow of carbon dioxide in vertical upward and downward direction
    Schmid, David
    Verlaat, Bart
    Petagna, Paolo
    Revellin, Remi
    Schiffmann, Jurg
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2022, 131
  • [50] Experimental validation of the calculation of phase holdup for an oil-water two-phase vertical flow based on the measurement of pressure drops
    Zhang, Jian
    Xu, Jing-yu
    Wu, Ying-xiang
    Li, Dong-hui
    Li, Hua
    FLOW MEASUREMENT AND INSTRUMENTATION, 2013, 31 : 96 - 101