A NOVEL DEEP LEARNING-BASED CLASSIFICATION APPROACH FOR THE DETECTION OF HEART ARRHYTHMIAS FROM THE ELECTROCARDIOGRAPHY SIGNAL

被引:0
|
作者
Qureshi, Abdul razzak khan [1 ]
Patil, Govinda [1 ]
Bhatt, Ruby [1 ]
Moghe, Chhaya [2 ]
Pal, Hemant [1 ]
Tatawat, Chandresh [3 ]
机构
[1] Medi Caps Univ, Dept Comp Sci, Indore, Madhya Pradesh, India
[2] Medi Caps Univ, Dept Comp Applicat, Indore, Madhya Pradesh, India
[3] Medi Caps Univ, Dept Comp Sci Engn, Indore, Madhya Pradesh, India
来源
关键词
ECG; Detection; Heart Arrhythmias; deep learning; heart disease; ENSEMBLE;
D O I
10.12694/scpe.v26i1.3638
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cardiovascular disease causes more deaths than any other cause in the globe. The present method of illness identification involves electrocardiogram (ECG) analysis, a medical monitoring gadget that captures heart activity. Regrettably, a great deal of medical resources is required to locate specialists in ECG data. Consequently, ML feature detection in ECG is rapidly gaining popularity. Human intervention is required for "feature recognition, complex models, and lengthy training timeframes"- limitations that are inherent to these traditional approaches. Using the "MIT-BIH Arrhythmia" database, this study presents five distinct categories of heartbeats and the efficient and effective deep-learning (DL) classification algorithms that go along with them. The five types of pulse features are classified experimentally using the wavelet self-adaptive threshold denoising method. Models such as AlexNet and CNN are employed in this dataset. For model evaluation use some performance metrics, like recall, accuracy, precision, and f1-score. The suggested Alex Net model achieves an overall classification accuracy of 99.68%, while the recommended CNN model achieves an accuracy of 99.89%. The end findings demonstrate that the suggested models outperform the current model on several performance criteria and are more efficient overall. With its accurate categorization, important medical resources are better preserved, which has a positive effect on the practice of medicine.
引用
收藏
页码:371 / 387
页数:17
相关论文
共 50 条
  • [31] A deep learning-based classification for topic detection of audiovisual documents
    Fourati, Manel
    Jedidi, Anis
    Gargouri, Faiez
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8776 - 8798
  • [32] A deep learning-based classification for topic detection of audiovisual documents
    Manel Fourati
    Anis Jedidi
    Faiez Gargouri
    Applied Intelligence, 2023, 53 : 8776 - 8798
  • [33] Deep Learning-Based In-Band Interference Detection and Classification
    Andersson, Andreas
    Eliardsson, Patrik
    Axell, Erik
    Hagglund, Kristoffer
    Wiklundh, Kia
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2024, 66 (06) : 1958 - 1966
  • [34] Deep learning-based classification model for botnet attack detection
    Ahmed, Abdulghani Ali
    Jabbar, Waheb A.
    Sadiq, Ali Safaa
    Patel, Hiran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3457 - 3466
  • [35] Deep learning-based smoker classification and detection: An overview and evaluation
    Khan, Ali
    Elhassan, Mohammed A. M.
    Khan, Somaiya
    Deng, Hai
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [36] Robust Deep Learning-Based Driver Distraction Detection and Classification
    Ezzouhri, Amal
    Charouh, Zakaria
    Ghogho, Mounir
    Guennoun, Zouhair
    IEEE ACCESS, 2021, 9 : 168080 - 168092
  • [37] Deep Learning-Based Classification for Melanoma Detection Using XceptionNet
    Lu, Xinrong
    Zadeh, Y. A. Firoozeh Abolhasani
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [38] The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach
    Bao, Xinqi
    Xu, Yujia
    Kamavuako, Ernest Nlandu
    SENSORS, 2022, 22 (06)
  • [39] A Novel Discrete Deep Learning-Based Cancer Classification Methodology
    Soltani, Marzieh
    Khashei, Mehdi
    Bakhtiarvand, Negar
    COGNITIVE COMPUTATION, 2024, 16 (03) : 1345 - 1363
  • [40] A Hybrid Deep Learning-Based Approach for Brain Tumor Classification
    Raza, Asaf
    Ayub, Huma
    Khan, Javed Ali
    Ahmad, Ijaz
    Salama, Ahmed S.
    Daradkeh, Yousef Ibrahim
    Javeed, Danish
    Rehman, Ateeq Ur
    Hamam, Habib
    ELECTRONICS, 2022, 11 (07)