Asymptotic methods for confined fluids

被引:0
|
作者
Di Bernardo, E. [1 ]
Brader, J. M. [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
关键词
DENSITY-FUNCTIONAL THEORY; YANG-LEE DISTRIBUTION; STATISTICAL-MECHANICS; HARD-SPHERES; EQUILIBRIUM; NONUNIFORM; ZEROS;
D O I
10.1103/PhysRevE.111.024144
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The thermodynamics and microstructure of confined fluids with small particle number are best described using the canonical ensemble. However, practical calculations can usually only be performed in the grand-canonical ensemble, which can introduce unphysical artifacts. We employ the method of asymptotics to transform grandcanonical observables to the canonical ensemble, where the former can be conveniently obtained using the classical density functional theory of inhomogeneous fluids. By formulating the ensemble transformation as a contour integral in the complex fugacity plane we reveal the influence of the Yang-Lee zeros in determining the form and convergence properties of the asymptotic series. The theory is employed to develop expansions for the canonical partition function and the canonical one-body density. Numerical investigations are then performed using an exactly soluble one-dimensional model system of hard rods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Excitations in confined fermi fluids
    Hernández, ES
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (28): : 5255 - 5265
  • [22] Thermal noise in confined fluids
    Sanghi, T.
    Aluru, N. R.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (17):
  • [23] Asymptotic behavior of trembling fluids
    Antontsev, S. N.
    de Oliveira, H. B.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 54 - 66
  • [24] Asymptotic analysis for micropolar fluids
    Dupuy, D
    Panasenko, GP
    Stavre, R
    COMPTES RENDUS MECANIQUE, 2004, 332 (01): : 31 - 36
  • [25] An analytic model for nano confined fluids phase-transition: Applications for confined fluids in nanotube and nanoslit
    Keshavarzi, TE
    Sohrabi, R
    Mansoori, GA
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2006, 3 (01) : 134 - 141
  • [27] Propagating hydrodynamic modes in confined fluids
    Porcheron, F
    Schoen, M
    PHYSICAL REVIEW E, 2002, 66 (04) : 14 - 041205
  • [28] Nanoparticle transport models in confined fluids
    Mahadevan, T. S.
    Kojic, M.
    Milosevic, M.
    Isailovic, V.
    Filipovic, N.
    Ferrari, M.
    Ziemys, A.
    NANOTECHNOLOGY 2012, VOL 2: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, 2012, : 412 - 415
  • [29] Local linear viscoelasticity of confined fluids
    Hansen, J. S.
    Daivis, P. J.
    Todd, B. D.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (14):
  • [30] Viscosity of confined inhomogeneous nonequilibrium fluids
    Zhang, JF
    Todd, BD
    Travis, KP
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (21): : 10778 - 10786