Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm

被引:0
|
作者
Yang, Xinan [1 ]
Gao, Sen [2 ]
Xia, Chen [3 ]
Zhang, Bo [3 ]
Chen, Rui [2 ]
Gao, Jie [2 ]
Zhu, Wenkui [1 ]
机构
[1] CNTC, Zhengzhou Tobacco Res Inst, Zhengzhou, Peoples R China
[2] China Tobacco Ind Co Ltd, Great Wall Cigar Factory Sichuan, Deyang, Peoples R China
[3] China Tobacco Zhejiang Ind Co Ltd, Technol Ctr, Hangzhou, Peoples R China
关键词
YOLOv5; BiFPN; EPSA; manufactured cigar; detection;
D O I
10.1109/SEAI62072.2024.10674565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To achieve the automatic detection of blue spots, plaques, and desquamation defects of manufactured cigars, an improved YOLOv5 model is proposed for the high-precision detection of manufactured cigar defects in the production process. The EPSA attention mechanism is added to the YOLOv5 model to make the network focused on the defect location. The PAN structure is replaced by the BiFPN structure in the Neck part of the model, which enhances the multi-scale fusion of features. Also, with the introduction of BiFPN in YOLOv5, the performances of the network with different attention mechanisms are compared. The experimental results show that the YOLOv5BE improves by 2.69 % at the mAP@0.5 compared with YOLOv5, reaching 94.15%. Therefore, the improved YOLOv5 model can effectively detect blue spots, disease spots, and desquamation defects of manufactured cigars, and provide technical support for the intelligent detection of manufactured cigars.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [11] An Improved YOLOv5 Algorithm for Wood Defect Detection Based on Attention
    Han, Siyu
    Jiang, Xiangtao
    Wu, Zhenyu
    IEEE ACCESS, 2023, 11 : 71800 - 71810
  • [12] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [13] Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5
    Liang, Jianan
    Kong, Ruiling
    Ma, Rong
    Zhang, Jinhua
    Bian, Xingrui
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (02)
  • [14] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [15] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [16] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [17] Research on Improved YOLOv5 Pipeline Defect Detection Algorithm
    Zeng, Jiangchao
    Zheng, Yiming
    Jin, Xinping
    Lin, Jinhong
    Feng, Yonghao
    JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2025, 16 (02)
  • [18] Surface defect detection algorithm of electronic components based on improved YOLOv5
    Zeng Y.
    Gao F.-Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (03): : 455 - 465
  • [19] Road Defect Detection Based on Yolov5 Algorithm
    Lei, Yankun
    Wang, Baoping
    Zhang, Nan
    Sun, Qin
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 488 - 493
  • [20] Research on strip surface defect detection based on improved YOLOv5 algorithm
    Lv, Shuaishuai
    Tao, Chuanzhen
    Hao, Zhuangzhuang
    Ni, Hongjun
    Hou, Zhengjie
    Li, Xiaoyuan
    Gu, Hai
    Shi, Weidong
    Chen, Linfei
    IRONMAKING & STEELMAKING, 2024, 51 (10) : 1046 - 1064