Development of cellulose-based self-healing hydrogel smart packaging for fish preservation and freshness indication

被引:6
|
作者
Wang, Suyang [1 ]
Ma, Yan [1 ]
Wang, Feijie [1 ]
Lu, Chenhui [2 ]
Liu, Yichi [1 ]
Zhang, Shenzhuo [1 ]
Ma, Shufeng [2 ]
Wang, Liqiang [1 ]
机构
[1] Jiangnan Univ, Sch Mech Engn, Jiangsu Prov Key Lab Food Adv Mfg Equipment Techno, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, State Key Lab Food Sci & Resources, Wuxi 214122, Peoples R China
关键词
ZIF-8; Nanocellulose; Polyvinyl alcohol; Self-healing; Smart packaging; POLY(VINYL ALCOHOL); FOOD; CURCUMIN; FILLETS; FABRICATION; MEMBRANES; MATRICES; BORAX;
D O I
10.1016/j.carbpol.2024.122806
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Biomass-based composite packaging materials loaded with functional fillers have good application prospects in food preservation and freshness detection. Self-healing hydrogel packaging films based on nanocellulose (CNF), polyvinyl alcohol (PVA), and ZIF-8 embedded with curcumin (Cur@ZIF-8) were developed in this study. The synthesis of Cur@ZIF-8 was demonstrated by characterization experiments. The addition of Cur@ZIF-8 enhanced the water vapor barrier property, tensile strength, and elongation at break of hydrogel films by 49.2 %, 193.5 %, and 172.9 %, respectively, and endowed them with excellent antimicrobial, antioxidant, and ammonia sensitivity. In packaging tests with fish, hydrogel films loaded with Cur@ZIF-8 inhibited spoilage and microbial growth to extend the shelf life of fish to 9 days, and the color change of hydrogel films allowed for real-time monitoring of fish freshness. This study provided a new solution for smart packaging materials with dual functions of preservation and freshness indication.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material
    Yin, Huishuang
    Song, Peiqin
    Chen, Xingyu
    Huang, Qiuyan
    Huang, Huihua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 221 : 1606 - 1617
  • [32] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Imtiaz Hussain
    Xiaofeng Ma
    Linlin Wu
    Zhenyang Luo
    Cellulose, 2022, 29 : 5725 - 5743
  • [33] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Hussain, Imtiaz
    Ma, Xiaofeng
    Wu, Linlin
    Luo, Zhenyang
    CELLULOSE, 2022, 29 (10) : 5725 - 5743
  • [34] Chitosan-based self-healing hydrogel for bioapplications
    Li, Yongsan
    Wang, Xing
    Wei, Yen
    Tao, Lei
    CHINESE CHEMICAL LETTERS, 2017, 28 (11) : 2053 - 2057
  • [35] Biomimetic anisotropic hydrogel as a smart self-healing agent of sustainable cement-based infrastructure
    Liu, Ming
    Hu, Miaomiao
    Zou, Shuang
    Lu, Haichuan
    Yu, Jiayu
    Guo, Jintang
    CEMENT & CONCRETE COMPOSITES, 2024, 154
  • [36] Chitosan-based self-healing hydrogel for bioapplications
    Yongsan Li
    Xing Wang
    Yen Wei
    Lei Tao
    ChineseChemicalLetters, 2017, 28 (11) : 2053 - 2057
  • [37] Chitosan-based self-healing hydrogel dressing for wound healing
    Zhang, Xingyu
    Liang, Yongping
    Huang, Shengfei
    Guo, Baolin
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2024, 332
  • [38] Development of cellulose-based migratory and nonmigratory active packaging films
    Harini, K.
    Sukumar, M.
    CARBOHYDRATE POLYMERS, 2019, 204 : 202 - 213
  • [39] Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte
    Tao X.-Y.
    Ma W.-B.
    Han X.-D.
    Zhu K.-H.
    Ye S.-F.
    Sha H.
    Guo L.
    Wei X.-Y.
    Xu C.
    Zhu S.-G.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (03): : 304 - 313
  • [40] Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property
    Yue, Lipei
    Zhang, Xiaoyong
    Wang, Yijing
    Li, Weidong
    Tang, Ying
    Bai, Yongping
    EUROPEAN POLYMER JOURNAL, 2021, 146