Interfacial Momentum Matching for Ohmic Van Der Waals Contact Construction

被引:0
|
作者
Jabegu, Tara [1 ]
Li, Ningxin [1 ,2 ]
Okmi, Aisha [3 ]
Tipton, Benjamin [1 ]
Vlassiouk, Ivan [4 ]
Xiao, Kai [4 ]
Urazhdin, Sergei [5 ]
Yao, Yao [6 ]
Lei, Sidong [1 ,7 ,8 ]
机构
[1] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30303 USA
[3] Jazan Univ, Coll Sci, Dept Phys Sci, Phys Div, Jazan 45142, Saudi Arabia
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[6] Kennesaw State Univ, Dept Phys, Kennesaw, GA 30062 USA
[7] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[8] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
2D-3D integration; momentum matching; van der Waals contact; TRANSITION;
D O I
10.1002/aelm.202400397
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The difficulty of achieving ohmic contacts is a long-standing challenge for the development and integration of devices based on 2D materials, due to the large mismatch between their electronic properties and those of both traditional metal-based and van der Waals (vdWs) electrodes. Research has focused primarily on the electronic energy band alignment, while the effects of momentum mismatch on carrier transport across the vdWs gaps are largely neglected. Graphene-silicon junctions are utilized to demonstrate that electron momentum distribution can dominate the electronic properties of vdWs contacts. By judiciously introducing scattering centers at the interface that provide additional momentum to compensate the momentum mismatch, the junction conductivity is enhanced by more than three orders of magnitude, enabling the formation of high-quality ohmic contacts. The study establishes the framework for the design of high-performance ohmic vdWs contacts based on both energy and momentum matching, which can facilitate efficient heterogeneous integration of 2D-3D systems and the development of post-CMOS architectures.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A van der Waals interfacial junction transistor for reconfigurable fuzzy logic hardware
    Liu, Hefei
    Wu, Jiangbin
    Ma, Jiahui
    Yan, Xiaodong
    Yang, Ning
    He, Xu
    He, Yangu
    Zhang, Hongming
    Hsu, Ting-Hao
    Qian, Justin H.
    Guo, Jing
    Hersam, Mark C.
    Wang, Han
    NATURE ELECTRONICS, 2024, 7 (10): : 876 - 884
  • [42] Interfacial chemistry at solid-liquid van der Waals heterojunctions enabling sub-5 nm Ohmic contacts for monolayer semiconductors
    Liu, Dexing
    Zhang, Shengdong
    Zhang, Min
    MATERIALS HORIZONS, 2025, 12 (06) : 1929 - 1937
  • [43] Coincident-site lattice matching during van der Waals epitaxy
    Jos E. Boschker
    Lauren A. Galves
    Timur Flissikowski
    Joao Marcelo J. Lopes
    Henning Riechert
    Raffaella Calarco
    Scientific Reports, 5
  • [44] Irreversible coherent matching bonding of van der Waals heterostructure lattice by pressure
    Zhen, Jiapeng
    Huang, Qiushi
    Shen, Kai
    Dong, Hongliang
    Zhang, Shihui
    Lv, Kehong
    Yang, Peng
    Zhang, Yong
    Guo, Silin
    Qiu, Jing
    Liu, Guanjun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (23)
  • [45] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [46] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [47] Coincident-site lattice matching during van der Waals epitaxy
    Boschker, Jos E.
    Galves, Lauren A.
    Flissikowski, Timur
    Lopes, Joao Marcelo J.
    Riechert, Henning
    Calarco, Raffaella
    SCIENTIFIC REPORTS, 2015, 5
  • [48] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [49] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [50] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425