Reproducible image-based profiling with Pycytominer

被引:0
|
作者
Serrano, Erik [1 ]
Chandrasekaran, Srinivas Niranj [2 ]
Bunten, Dave [1 ]
Brewer, Kenneth I.
Tomkinson, Jenna [1 ]
Kern, Roshan [1 ,3 ]
Bornholdt, Michael [2 ]
Fleming, Stephen J. [4 ]
Pei, Ruifan [2 ]
Arevalo, John [2 ]
Tsang, Hillary [2 ]
Rubinetti, Vincent [1 ]
Tromans-Coia, Callum [2 ]
Becker, Tim [2 ]
Weisbart, Erin [2 ]
Bunne, Charlotte [2 ]
Kalinin, Alexandr A. [2 ]
Senft, Rebecca [2 ]
Taylor, Stephen J. [1 ]
Jamali, Nasim [2 ]
Adeboye, Adeniyi [2 ]
Abbasi, Hamdah Shafqat [2 ]
Goodman, Allen [2 ,5 ]
Caicedo, Juan C. [2 ,6 ]
Carpenter, Anne E. [2 ]
Cimini, Beth A. [2 ]
Singh, Shantanu [2 ]
Way, Gregory P. [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Biomed Informat, Aurora, CO 80045 USA
[2] Broad Inst MIT & Harvard, Imaging Platform, Cambridge, MA 02138 USA
[3] Case Western Reserve Univ, Cleveland, OH USA
[4] Broad Inst MIT & Harvard, Data Sci Platform, Cambridge, MA USA
[5] Genentech gRED, South San Francisco, CA USA
[6] Univ Wisconsin, Mor, Madison, WI USA
关键词
D O I
10.1038/s41592-025-02611-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Next, whether by deep learning or classical algorithms, image analysis pipelines commonly produce single-cell features. To process these single cells for downstream applications, we present Pycytominer, a user-friendly, open-source Python package that implements the bioinformatics steps key to image-based profiling. We demonstrate Pycytominer's usefulness in a machine-learning project to predict nuisance compounds that cause undesirable cell injuries.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Image-based profiling for drug discovery: due for a machine-learning upgrade?
    Srinivas Niranj Chandrasekaran
    Hugo Ceulemans
    Justin D. Boyd
    Anne E. Carpenter
    Nature Reviews Drug Discovery, 2021, 20 : 145 - 159
  • [32] Image-based profiling for drug discovery: due for a machine-learning upgrade?
    Chandrasekaran, Srinivas Niranj
    Ceulemans, Hugo
    Boyd, Justin D.
    Carpenter, Anne E.
    NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (02) : 145 - 159
  • [33] Quantitative Image Analysis, Image-Based Profiling Including 3D Digital Printing and AI
    Lantuejoul, S.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S190 - S191
  • [34] Image-based Animation
    Choudhury, Biswarup
    Raghothaman, Ambareesha
    Chandran, Sharat
    WSCG 2011: FULL PAPERS PROCEEDINGS, 2011, : 57 - 64
  • [35] Image-based shaving
    Nguyen, Minh Hoai
    Lalonde, Jean-Francois
    Efros, Alexei A.
    De la Torre, Fernando
    COMPUTER GRAPHICS FORUM, 2008, 27 (02) : 627 - 635
  • [36] Image-based screening
    Layer, G.
    RADIOLOGE, 2019, 59 (01): : 5 - 12
  • [37] Image-based lighting
    Debevec, P
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2002, 22 (02) : 26 - 34
  • [38] Image-Based Remodeling
    Colburn, Alex
    Agarwala, Aseem
    Hertzmann, Aaron
    Curless, Brian
    Cohen, Michael F.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (01) : 56 - 66
  • [39] Image-based objects
    Univ of North Carolina at Chapel, Hill, Chapel Hill, NC, United States
    Proc Symp Interactive 3D Graphics, (191-198):
  • [40] Image-Based Streamsurfaces
    Machado, Gustavo M.
    Sadlo, Filip
    Ertl, Thomas
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 343 - 350