Electrical, magnetic, and magneto-electric properties of PVDF/ZnFe2O4 polymer nanocomposites

被引:0
|
作者
Harsha Chouhan [1 ]
Maheswar Panda [1 ]
Samanway Mohanta [2 ]
Dinesh Kumar Shukla [2 ]
机构
[1] Dr. Harisingh Gour Vishwavidyalaya (A Central University),Multifunctional Polymer Nanocomposites Laboratory, Department of Physics
[2] UGC DAE Consortium for Scientific Research,undefined
[3] University Campus,undefined
关键词
D O I
10.1007/s10854-025-14721-2
中图分类号
学科分类号
摘要
In this study, (1–x) Polyvinylidene fluoride (PVDF)/(x) ZnFe2O4 (ZF), x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, & 1.0 polymer nanocomposites (PNC) were prepared. The idea of preparing nanocomposites employing the synthesis method is novel as the thermal treatment is used to control the agglomeration and further cold-pressed method to preserve the spherulites helpful in improved multiferroic properties. A detailed and systematic study on percolation, electrical, magnetic, and magneto-electric properties were performed. Electrical measurements indicate a substantial enhancement in the dielectric constant from 32 to 70 (100 Hz) at the percolation threshold of 0.39 ±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm$$\end{document} 0.001 during the insulator-to-metal transition. The percolation exponents [s, s’] were assessed utilizing scaling laws, lying in the universal percolation region. Modulus spectra demonstrated relaxation behavior at the percolation threshold, and the relaxation was fitted with the modified Kohlrausch–Williams–Watts function, yielding a stretching coefficient within the range of [0–1], confirming non-Debye-type relaxation. Notably, percolated samples exhibited improved conductivity, obeying Jonscher’s power law. Additionally, the Arrott plot confirms the ferromagnetic behavior through positive intercepts on the M2 axis, and the magnetization is retained in the PNC by the sum property of the composite. The highest magneto-electric coupling coefficient value is about 0.6 mV/cm. Oe is achieved in 0.6PVDF- 0.4ZF nanocomposites at the low frequency of 23-Hz AC field superimposed with 0.5 Tesla DC field due to the higher magnetostriction generated in ferrite at this fraction, resulting in large change in the magneto-electric coupling coefficient.
引用
收藏
相关论文
共 50 条
  • [31] Effect of Preparation on Structure and Magnetic Properties of ZnFe2O4
    Niyaifar, Mohammad
    JOURNAL OF MAGNETICS, 2014, 19 (02) : 101 - 105
  • [32] Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticles
    Zhao H.-T.
    Zhang Q.
    Liu R.-P.
    Ding X.-Y.
    Ma R.-T.
    Zhao, Hai-Tao (zht95711@163.com), 1600, Beijing Institute of Aeronautical Materials (BIAM) (44): : 103 - 107
  • [33] Magnetic properties of solvothermally synthesized ZnFe2O4 nanoparticles
    Blanco-Gutierrez, V.
    Torralvo, M. J.
    Saez-Puche, R.
    Bonville, P.
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [34] Cation vacancy and magnetic properties of ZnFe2O4 microspheres
    Sarkar, K.
    Mondal, R.
    Dey, S.
    Kumar, S.
    PHYSICA B-CONDENSED MATTER, 2020, 583
  • [35] Effect of antisite defects on the magnetic properties of ZnFe2O4
    Sutka, A.
    Paerna, R.
    Zamovskis, M.
    Kisand, V.
    Mezinskis, G.
    Kleperis, J.
    Maiorov, M.
    Jakovlev, D.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (09): : 1892 - 1897
  • [36] Physical and magnetic properties of biosynthesized ZnO/Fe2O3, ZnO/ZnFe2O4, and ZnFe2O4 nanoparticles
    Noukelag, Sandrine Kamdoum
    Cummings, Franscious
    Arendse, Christopher J.
    Maaza, Malik
    RESULTS IN SURFACES AND INTERFACES, 2023, 10
  • [37] Size Effects on the Magnetic Properties of ZnFe2O4 Nanoparticles
    E. C. Mendonça
    C. B. R. Jesus
    W. S. D. Folly
    C. T. Meneses
    J. G. S. Duque
    Journal of Superconductivity and Novel Magnetism, 2013, 26 : 2329 - 2331
  • [38] Size Effects on the Magnetic Properties of ZnFe2O4 Nanoparticles
    Mendonca, E. C.
    Jesus, C. B. R.
    Folly, W. S. D.
    Meneses, C. T.
    Duque, J. G. S.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (06) : 2329 - 2331
  • [39] Enhanced Antibacterial Activity of Novel Magnetic ZnFe2O4/ AgCl Nanocomposites
    Pius, Minu
    Joseph, Navya
    James, Kezia
    MATERIALS TODAY-PROCEEDINGS, 2019, 9 : 70 - 76
  • [40] Preparation and Characterization of ZnO - ZnFe2O4 Nanocomposites
    Kiran, Surasi
    Saibaba, Konagolla
    Ramesh, Thotakura
    Ashok, Kollu
    Polu, Anji Reddy
    MACROMOLECULAR SYMPOSIA, 2023, 407 (01)