GMNI: Achieve good data augmentation in unsupervised graph contrastive learning

被引:0
|
作者
Xiong, Xin [1 ]
Wang, Xiangyu [1 ]
Yang, Suorong [1 ]
Shen, Furao [1 ]
Zhao, Jian [2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Graph contrastive learning; Data augmentation;
D O I
10.1016/j.neunet.2024.106804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called Minimal Noteworthy Information for unsupervised Graph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Features based adaptive augmentation for graph contrastive learning
    Ali, Adnan
    Li, Jinlong
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [32] Invariant Risk Minimization Augmentation for Graph Contrastive Learning
    Qin, Peng
    Chen, Weifu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT IV, 2025, 15034 : 135 - 147
  • [33] Temporal Graph Representation Learning with Adaptive Augmentation Contrastive
    Chen, Hongjiang
    Jiao, Pengfei
    Tang, Huijun
    Wu, Huaming
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 683 - 699
  • [34] Contrastive learning for fair graph representations via counterfactual graph augmentation
    Li, Chengyu
    Cheng, Debo
    Zhang, Guixian
    Zhang, Shichao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [35] Graph Contrastive Learning With Adaptive Proximity-Based Graph Augmentation
    Zhuo, Wei
    Tan, Guang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14301 - 14314
  • [36] Multi-relational graph contrastive learning with learnable graph augmentation
    Mo, Xian
    Pang, Jun
    Wan, Binyuan
    Tang, Rui
    Liu, Hao
    Jiang, Shuyu
    NEURAL NETWORKS, 2025, 181
  • [37] Multilevel Contrastive Graph Masked Autoencoders for Unsupervised Graph-Structure Learning
    Fu, Sichao
    Peng, Qinmu
    He, Yang
    Wang, Xiaorui
    Zou, Bin
    Xu, Duanquan
    Jing, Xiao-Yuan
    You, Xinge
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 3464 - 3478
  • [38] Unsupervised Discriminative Feature Selection via Contrastive Graph Learning
    Zhou, Qian
    Wang, Qianqian
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 972 - 986
  • [39] Dual-Graph Contrastive Learning for Unsupervised Person Reidentification
    Zhang, Lin
    Song, Ran
    Wang, Yifan
    Zhang, Qian
    Zhang, Wei
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (04) : 1352 - 1363
  • [40] Encoder augmentation for multi-task graph contrastive learning
    Wang, Xiaoyu
    Zhang, Qiqi
    Liu, Gen
    Zhao, Zhongying
    Cui, Hongzhi
    NEUROCOMPUTING, 2025, 630