GMNI: Achieve good data augmentation in unsupervised graph contrastive learning

被引:0
|
作者
Xiong, Xin [1 ]
Wang, Xiangyu [1 ]
Yang, Suorong [1 ]
Shen, Furao [1 ]
Zhao, Jian [2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Graph contrastive learning; Data augmentation;
D O I
10.1016/j.neunet.2024.106804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called Minimal Noteworthy Information for unsupervised Graph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Xu, Shaowu
    Wang, Luo
    Jia, Xibin
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10705 - 10726
  • [2] Graph Contrastive Learning with Constrained Graph Data Augmentation
    Shaowu Xu
    Luo Wang
    Xibin Jia
    Neural Processing Letters, 2023, 55 : 10705 - 10726
  • [3] Unsupervised Graph Transformer With Augmentation-Free Contrastive Learning
    Zhao, Han
    Yang, Xu
    Wei, Kun
    Deng, Cheng
    Tao, Dacheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 7296 - 7307
  • [4] AAGCN: An adaptive data augmentation for graph contrastive learning
    Qin, Peng
    Lu, Yaochun
    Chen, Weifu
    Li, Defang
    Feng, Guocan
    PATTERN RECOGNITION, 2025, 163
  • [5] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [6] Prefix Data Augmentation for Contrastive Learning of Unsupervised Sentence Embedding
    Wang, Chunchun
    Lv, Shu
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [7] Adaptive Graph Augmentation for Graph Contrastive Learning
    Wang, Zeming
    Li, Xiaoyang
    Wang, Rui
    Zheng, Changwen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 354 - 366
  • [8] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Zhenpeng Wu
    Jiamin Chen
    Raeed Al-Sabri
    Babatounde Moctard Oloulade
    Jianliang Gao
    Knowledge and Information Systems, 2024, 66 : 1657 - 1681
  • [9] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Wu, Zhenpeng
    Chen, Jiamin
    Al-Sabri, Raeed
    Oloulade, Babatounde Moctard
    Gao, Jianliang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 1657 - 1681
  • [10] Graph Contrastive Learning with Adaptive Augmentation
    Zhu, Yanqiao
    Xu, Yichen
    Yu, Feng
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2069 - 2080