Dual-branch channel attention enhancement feature fusion network for diabetic retinopathy segmentation

被引:0
|
作者
Ma, Lei
Liu, Ziqian
Xu, Qihang
Hong, Hanyu [1 ]
Wang, Lei
Zhu, Ying
Shi, Yu
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Hubei, Peoples R China
关键词
U-Net; Transformer; Feature fusion; Channel attention enhancement; Diabetic retinopathy segmentation; LESION SEGMENTATION;
D O I
10.1016/j.bspc.2025.107721
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy (DR) is an eye disease caused by diabetes that leads to impaired vision and even blindness. DR segmentation technology can assist ophthalmologists with early diagnosis, which can help to prevent the progression of this disease. However, DR segmentation is a challenging task because of the large variation in scale, high inter-class similarity, complex structures, blurred edges and different brightness contrasts of different kinds of lesions. Most existing methods tend not to adequately extract the semantic information in the channels of lesion features, which is a critical element for effectively distinguishing lesion edges. In this paper, we propose a dual-branch channel attention enhancement feature fusion network that integrates CNN and Transformer for DR segmentation. First, we introduce a Channel Crossing Attention Module (CCAM) into the UNet framework to eliminate semantic inconsistencies between the encoder and decoder for better integration of contextual information. Moreover, we leverage Transformer's robust global information acquisition capabilities to acquire long-range information, and further enhance the contextual information. Finally, we build a Dual- branch Channel Attention Enhancement Fusion Module (DCAE) to enhance the semantic information of the channels in both branches, which improves the discriminability of the blurred edges of lesions. Compared with the state-of-the-art methods, our method improved mAUPR, mDice, and mIOU by 1.36%, 1.85%, and 2.20% on the IDRiD dataset, and by 4.62%, 0.20%, and 2.60% on the DDR dataset, respectively. The experimental results show that the multi-scale semantic features of the two branches are effectively fused, which achieves accurate lesion segmentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Parallel Dual-Branch Polyp Segmentation Network
    Sun, Kunjie
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    IEEE ACCESS, 2024, 12 : 192051 - 192061
  • [22] Curb Segmentation Using Dual Branch and Feature Fusion Network
    Sun, Yang
    Han, Lei
    Wang, Chengqing
    Li, Yunpeng
    Computer Engineering and Applications, 2023, 59 (09): : 255 - 261
  • [23] DBIF: Dual-Branch Feature Extraction Network for Infrared and Visible Image Fusion
    Zhang, Haozhe
    Cui, Rongpu
    Zheng, Zhuohang
    Gao, Shaobing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 309 - 323
  • [24] CFIFusion: Dual-Branch Complementary Feature Injection Network for Medical Image Fusion
    Xie, Yiyuan
    Yu, Lei
    Ding, Cheng
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (04)
  • [25] MDAN: Multilevel dual-branch attention network for infrared and visible image fusion
    Wang, Jiawei
    Jiang, Min
    Kong, Jun
    OPTICS AND LASERS IN ENGINEERING, 2024, 176
  • [26] DUAL-BRANCH ATTENTION NETWORK AND SWIN SPATIAL PYRAMID POOLING FOR RETINOPATHY OF PREMATURITY CLASSIFICATION
    Zhao, Jia
    Lei, Haijun
    Xie, Hai
    Li, Pingkang
    Liu, Yaling
    Zhang, Guoming
    Lei, Baiying
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [27] PFRNet: Dual-Branch Progressive Fusion Rectification Network for Monaural Speech Enhancement
    Yu, Runxiang
    Zhao, Ziwei
    Ye, Zhongfu
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2358 - 2362
  • [28] A Vascular Feature Detection and Matching Method Based on Dual-Branch Fusion and Structure Enhancement
    Xu, Kaiyang
    Wu, Haibin
    Iwahori, Yuji
    Yu, Xiaoyu
    Hu, Zeyu
    Wang, Aili
    SENSORS, 2024, 24 (06)
  • [29] DBDAN: Dual-Branch Dynamic Attention Network for Semantic Segmentation of Remote Sensing Images
    Che, Rui
    Ma, Xiaowen
    Hong, Tingfeng
    Wang, Xinyu
    Feng, Tian
    Zhang, Wei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 306 - 317
  • [30] SBCNet: Scale and Boundary Context Attention Dual-Branch Network for Liver Tumor Segmentation
    Wang, Kai-Ni
    Li, Sheng-Xiao
    Bu, Zhenyu
    Zhao, Fu-Xing
    Zhou, Guang-Quan
    Zhou, Shou-Jun
    Chen, Yang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2854 - 2865