Electrocardiogram-based deep learning to predict mortality in paediatric and adult congenital heart disease

被引:5
|
作者
Mayourian, Joshua [1 ,2 ]
El-Bokl, Amr [1 ,2 ]
Lukyanenko, Platon [3 ]
La Cava, William G. [3 ]
Geva, Tal [1 ,2 ]
Valente, Anne Marie [1 ,2 ]
Triedman, John K. [1 ,2 ]
Ghelani, Sunil J. [1 ,2 ]
机构
[1] Boston Childrens Hosp, Dept Cardiol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston Childrens Hosp, Dept Pediat, Computat Hlth Informat Program, Boston, MA USA
基金
美国国家卫生研究院;
关键词
Congenital heart disease; Mortality; Risk stratification; Electrocardiogram; Artificial intelligence; SUDDEN CARDIAC DEATH; VENTRICULAR-ARRHYTHMIAS; EJECTION FRACTION; TETRALOGY; FAILURE; FALLOT; RISK; QRS; DYSFUNCTION; POPULATION;
D O I
10.1093/eurheartj/ehae651
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and Aims Robust and convenient risk stratification of patients with paediatric and adult congenital heart disease (CHD) is lacking. This study aims to address this gap with an artificial intelligence-enhanced electrocardiogram (ECG) tool across the lifespan of a large, diverse cohort with CHD.Methods A convolutional neural network was trained (50%) and tested (50%) on ECGs obtained in cardiology clinic at the Boston Children's Hospital to detect 5-year mortality. Temporal validation on a contemporary cohort was performed. Model performance was evaluated using the area under the receiver operating characteristic and precision-recall curves.Results The training and test cohorts composed of 112 804 ECGs (39 784 patients; ECG age range 0-85 years; 4.9% 5-year mortality) and 112 575 ECGs (39 784 patients; ECG age range 0-92 years; 4.6% 5-year mortality from ECG), respectively. Model performance (area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.77-0.81; area under the precision-recall curve 0.17, 95% confidence interval 0.15-0.19) outperformed age at ECG, QRS duration, and left ventricular ejection fraction and was similar during temporal validation. In subgroup analysis, artificial intelligence-enhanced ECG outperformed left ventricular ejection fraction across a wide range of CHD lesions. Kaplan-Meier analysis demonstrates predictive value for longer-term mortality in the overall cohort and for lesion subgroups. In the overall cohort, precordial lead QRS complexes were most salient with high-risk features including wide and low-amplitude QRS complexes. Lesion-specific high-risk features such as QRS fragmentation in tetralogy of Fallot were identified.Conclusions This temporally validated model shows promise to inexpensively risk-stratify individuals with CHD across the lifespan, which may inform the timing of imaging/interventions and facilitate improved access to care. Structured Graphical Abstract A large and diverse paediatric and adult congenital heart disease cohort was used to train and test an artificial intelligence-enhanced electrocardiogram algorithm to accurately predict 5-year mortality across a range of congenital heart disease lesions. In an effort to interpret model behaviour, model explainability analysis was performed. AI-ECG, artificial intelligence-enhanced electrocardiogram; ASD, atrial septal defect; CAVC, complete atrioventricular canal defect; CNN, convoluted neural network; CoA, coarctation of the aorta; DORV, double outlet right ventricle; ECG, electrocardiogram; HLHS, hypoplastic left heart syndrome; LV, left ventricle; LVEF, left ventricular ejection fraction; PA, pulmonary atresia; RV, right ventricle; TAPVR, totally anomalous pulmonary venous return; TGA, transposition of the great arteries; ToF, tetralogy of Fallot; VSD, ventricular septal defect.
引用
收藏
页码:856 / 868
页数:13
相关论文
共 50 条
  • [21] Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model
    Adedinsewo, Demilade A.
    Johnson, Patrick W.
    Douglass, Erika J.
    Attia, Itzhak Zachi
    Phillips, Sabrina D.
    Goswami, Rohan M.
    Yamani, Mohamad H.
    Connolly, Heidi M.
    Rose, Carl H.
    Sharpe, Emily E.
    Blauwet, Lori
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Carter, Rickey E.
    Noseworthy, Peter A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 586 - 596
  • [22] DEEP LEARNING-BASED ELECTROCARDIOGRAM ANALYSIS TO PREDICT MORTALITY IN REPAIRED TETRALOGY OF FALLOT
    Van Boxtel, Juul
    Mayourian, Joshua
    Sleeper, Lynn
    Diwanji, Vedang
    Geva, Alon
    O'Leary, Edward
    Triedman, John K.
    Ghelani, Sunil J.
    Valente, Anne Marie
    Geva, Tal
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 1581 - 1581
  • [23] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [24] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [25] Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy
    Wouters, Philippe C.
    van de Leur, Rutger R.
    Vessies, Melle B.
    van Stipdonk, Antonius M. W.
    Ghossein, Mohammed A.
    Hassink, Rutger J.
    Doevendans, Pieter A.
    van der Harst, Pim
    Maass, Alexander H.
    Prinzen, Frits W.
    Vernooy, Kevin
    Meine, Mathias
    van Es, Rene
    EUROPEAN HEART JOURNAL, 2023, 44 (08) : 680 - +
  • [26] Congenital heart disease and the electrocardiogram
    Eisenberg, G
    Gibson, S
    JOURNAL OF PEDIATRICS, 1941, 19 : 452 - 469
  • [27] THE ELECTROCARDIOGRAM IN CONGENITAL HEART DISEASE
    UHLEY, MH
    AMERICAN HEART JOURNAL, 1949, 37 (04) : 682 - 682
  • [28] THE ELECTROCARDIOGRAM IN CONGENITAL HEART DISEASE
    BURCHELL, HB
    MEDICAL CLINICS OF NORTH AMERICA, 1949, (NMAYO) : 1157 - 1175
  • [29] Capturing Adult Congenital Heart Disease: Framework for Development of an Adult Congenital Heart Disease Mortality Risk Model
    Nelson, Jennifer S.
    Fuller, Stephanie
    Kim, Yuli Y.
    Maul, Timothy M.
    Najm, Hani K.
    Scholl, Frank G.
    Feins, Eric N.
    Wearden, Peter D.
    Husain, S. Adil
    Backer, Carl L.
    Karamlou, Tara
    ANNALS OF THORACIC SURGERY, 2022, 114 (05): : 1762 - 1770
  • [30] Optical electrocardiogram based heart disease prediction using hybrid deep learning
    Avinash L. Golande
    T. Pavankumar
    Journal of Big Data, 10