Propagation failure for traveling fronts of the Nagumo equation on a lattice

被引:0
|
作者
Bustamante-Castaneda, Jose Fernando [1 ]
Cruz-Pacheco, Gustavo [2 ]
机构
[1] UNAM, Grad Program Math Sci, Apdo 20-726, Cdmx 04510, Mexico
[2] UNAM, Dept Math & Mech, IIMAS, Apdo 20-726, Cdmx 04510, Mexico
关键词
Propagation failure; Modulation theory; Nagumo equation; Lattice differential equation; Poisson summation formula; SOLITON EVOLUTION; RADIATION LOSS; WAVE SOLUTIONS; DISCRETE; ASYMPTOTICS; SYSTEMS; MODELS;
D O I
10.1016/j.wavemoti.2024.103483
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this work, we study the phenomenon of propagation failure for fronts in a bistable reaction- diffusion equation on a lattice in one and two dimensions. Using asymptotic methods and modulation theory, we approximate the anchoring region in the parameter space defined by the coupling coefficient and the bistability parameter. For the one-dimensional case, modulation theory yields a periodic, time-dependent velocity of the wavefront, governed by a Peierls- Nabarro potential. We provide a simple explanation for a numerical observation made in previous work by Mallet-Paret, Hoffman and Mallet-Paret (2010), regarding the fact that a stationary vertical wavefront begins to advance when its direction is perturbed. We also present numerical evidence demonstrating the accuracy of our approximations.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Traveling fronts for lattice neural field equations
    Faye, Gregory
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 378 : 20 - 32
  • [12] Asymptotic speed of propagation and traveling wave solutions for a lattice integral equation
    Weng, Peixuan
    Tian, Yanling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 159 - 175
  • [13] Traveling pulses in a coupled FitzHugh-Nagumo equation
    Shen, Jianhe
    Zhang, Xiang
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 418
  • [14] Finding stationary fronts for a discrete Nagumo and wave equation; construction
    Elmer, Christopher E.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (01) : 11 - 23
  • [15] Propagation failure reduction in a Nagumo chain
    Morfu, S
    PHYSICS LETTERS A, 2003, 317 (1-2) : 73 - 79
  • [16] Fronts, traveling fronts, and their stability in the generalized Swift-Hohenberg equation
    N. E. Kulagin
    L. M. Lerman
    T. G. Shmakova
    Computational Mathematics and Mathematical Physics, 2008, 48 : 659 - 676
  • [17] Fronts, Traveling Fronts, and Their Stability in the Generalized Swift-Hohenberg Equation
    Kulagin, N. E.
    Lerman, L. M.
    Shmakova, T. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 659 - 676
  • [18] Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction
    Weng, PX
    Huang, HX
    Wu, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 2003, 68 (04) : 409 - 439
  • [19] Traveling wave fronts in a delayed lattice competitive system
    Li, Kun
    Huang, Jianhua
    Li, Xiong
    He, Yanli
    APPLICABLE ANALYSIS, 2018, 97 (06) : 982 - 999
  • [20] Spectral Stability of Monotone Traveling Fronts for Reaction Diffusion-Degenerate Nagumo Equations
    Francisco Leyva, J.
    Lopez Rios, Luis F.
    Plaza, Ramon G.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (06) : 2335 - 2376