The positive mass theorem for asymptotically flat manifolds with isolated conical singularities

被引:1
|
作者
Dai, Xianzhe [1 ]
Sun, Yukai [2 ]
Wang, Changliang [3 ,4 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Peking Univ, Sch Math Sci, Key Lab Pure & Appl Math, Beijing 100871, Peoples R China
[3] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[4] Tongji Univ, Inst Adv Study, Key Lab Intelligent Comp & Applicat, Minist Educ, Shanghai 200092, Peoples R China
来源
基金
国家重点研发计划;
关键词
positive mass theorem; conical singularity; conformal change; blow-up; SCALAR CURVATURE; METRICS; PROOF;
D O I
10.1007/s11425-024-2325-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the positive mass theorem for asymptotically flat (AF for short) manifolds with finitely many isolated conical singularities. We do not impose the spin condition. Instead, we use the conformal blow-up technique which dates back to Schoen's final resolution of the Yamabe conjecture.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Isoperimetry for asymptotically flat 3-manifolds with positive ADM mass
    Haobin Yu
    Mathematische Annalen, 2023, 385 : 1475 - 1492
  • [12] A new mass for asymptotically flat manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    ADVANCES IN MATHEMATICS, 2014, 266 : 84 - 119
  • [13] A Positive Mass Theorem on Asymptotically Hyperbolic Manifolds with Corners along a Hypersurface
    Vincent Bonini
    Jie Qing
    Annales Henri Poincaré, 2008, 9 : 347 - 372
  • [14] A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface
    Bonini, Vincent
    Qing, Jie
    ANNALES HENRI POINCARE, 2008, 9 (02): : 347 - 372
  • [15] Thermodynamical description of stationary, asymptotically flat solutions with conical singularities
    Herdeiro, Carlos
    Radu, Eugen
    Rebelo, Carmen
    PHYSICAL REVIEW D, 2010, 81 (10)
  • [16] A survey on the positive mass theorem for asymptotically flat initial data sets
    Huang, Lan-Hsuan
    COMPTES RENDUS MECANIQUE, 2025, 353
  • [17] The Atiyah–Bott–Lefschetz Theorem for Manifolds with Conical Singularities
    Vladimir Nazaikinskii
    Bert-Wolfgang Schulze
    Boris Sternin
    Victor Shatalov
    Annals of Global Analysis and Geometry, 1999, 17 : 409 - 439
  • [18] The Riemann-Roch theorem for manifolds with conical singularities
    Schulze, BW
    Tarkhanov, N
    OSAKA JOURNAL OF MATHEMATICS, 1999, 36 (04) : 1011 - 1047
  • [19] Examples of asymptotically conical Ricci-flat Kahler manifolds
    van Coevering, Craig
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 465 - 496
  • [20] A GAUGE INVARIANT INDEX THEOREM FOR ASYMPTOTICALLY FLAT MANIFOLDS
    TAUBES, CH
    LECTURE NOTES IN PHYSICS, 1984, 202 : 85 - 94