Recycling the powder of spent alkaline batteries as a sustainable and reusable catalyst in producing biodiesel from waste cooking oil

被引:0
|
作者
Foroutan, Rauf [1 ]
Peighambardoust, Seyed Jamaleddin [1 ]
Foroughi, Mahsa [1 ]
Peighambardoust, Naeimeh Sadat [2 ]
Maleki, Basir [3 ]
Ramavandi, Bahman [4 ]
机构
[1] Univ Tabriz, Fac Chem & Petr Engn, Tabriz 5166616471, Iran
[2] Koc Univ, Boron & Adv Mat Applicat & Res Ctr KUBAM, TR-34450 Sariyer, Istanbul, Turkiye
[3] Esfarayen Univ Technol, Dept Chem Engn, Esfarayen, North Khorasan, Iran
[4] Bushehr Univ Med Sci, Persian Gulf Biomed Sci Res Inst, Syst Environm Hlth & Energy Res Ctr, Bushehr, Iran
关键词
E; -waste; Waste cooking oil; Diesel engines; Methanol; Alkaline batteries; HETEROGENEOUS CATALYST; ACTIVATED CARBON; HYDROGEN-PRODUCTION; CALCIUM-OXIDE; IONIC LIQUID; MICRO-RAMAN; COMPOSITE; OPTIMIZATION; PERFORMANCE; TRANSESTERIFICATION;
D O I
10.1016/j.envres.2025.121028
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alkaline batteries are widely used in contemporary society. However, their black powder, which contains metals, categorizes them as hazardous waste, posing environmental risks if not disposed of correctly. Similarly, waste cooking oil (WCO), frequently produced in homes and restaurants, is often discarded into the environment as waste. In this study, the spent black powder from alkaline batteries was effectively utilized as a catalyst for biodiesel generation from WCO. This catalyst, containing carbonaceous materials, MnO2, ZnO, and K, facilitated both esterification and transesterification processes. It featured a Brunauer-Emmett-Teller (BET) value of 31.87 m2/g. Response Surface Methodology with Central Composite Design (RSM-CCD) was used to evaluate the influence of key variables on production efficiency. The highest biodiesel yield (99.23%) was attained with a methanol-to-oil ratio of 16:1, a temperature of 70 degrees C, a catalyst mass of 3 wt%, and a production time of 160 min. The regeneration process revealed that n-hexane effectively removes glycerol and biodiesel residues from the catalyst. Additionally, the catalyst demonstrated strong reusability for up to five cycles, with a significant decline in catalytic activity observed after the fifth cycle. The process demonstrated an activation energy of 22.046 kJ/ mol and a pre-exponential factor of 62.878 min-1. It was characterized as endothermic (Delta H: 19.274 kJ/mol) and non-spontaneous (Delta G: 94.666 kJ/mol). The economic assessment in this study showed that the production cost of 1 kg of biodiesel using a catalyst derived from waste batteries is $0.579, demonstrating its cost-effectiveness compared to alternative methods for large-scale applications. Fourier Transform Infrared Spectroscopy (FTIR), 13C-NMR, and 1H-NMR analyses validated the catalyst's effectiveness in converting WCO to biodiesel. Therefore, it is suggested that this catalyst be tested at an industrial scale.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst
    Naeem, Abdul
    Khan, Ihtisham Wali
    Farooq, Muhammad
    Mahmood, Tahira
    Din, Israf Ud
    Ghazi, Zahid Ali
    Saeed, Tooba
    BIORESOURCE TECHNOLOGY, 2021, 328
  • [42] Kinetic and optimization study of sustainable biodiesel production from waste cooking oil using novel heterogeneous solid base catalyst
    Naeem, Abdul
    Wali Khan, Ihtisham
    Farooq, Muhammad
    Mahmood, Tahira
    Ud Din, Israf
    Ali Ghazi, Zahid
    Saeed, Tooba
    Bioresource Technology, 2021, 328
  • [43] Production of Biodiesel Using Alkaline Based Catalysts From Waste Cooking Oil: A Case Study
    Ehsan, Md
    Chowdhury, Md Tofajjal Hossain
    6TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2015, 105 : 638 - 645
  • [44] Biodiesel production from waste cooking oil using heterogeneous catalyst: Biodiesel product data and its characterization
    Putra, Meilana Dharma
    Nata, Iryanti Fatyasari
    Irawan, Chairul
    DATA IN BRIEF, 2020, 28
  • [45] Biodiesel from waste cooking oil in Mexico City
    Sheinbaum, Claudia
    Balam, Marco V.
    Robles, Guillermo
    Lelo de Larrea, Sebastian
    Mendoza, Roberto
    WASTE MANAGEMENT & RESEARCH, 2015, 33 (08) : 730 - 739
  • [46] Optimization of biodiesel production from waste cooking oil
    Abubakar, H. G.
    Abdulkareem, A. S.
    Jimoh, A.
    Agbajelola, O. D.
    Okafor, J. O.
    Afolabi, E. A.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (16) : 2355 - 2361
  • [47] Production and Application of Biodiesel from Waste Cooking oil
    Tuly, S. S.
    Saha, M.
    Mustafi, N. N.
    Sarker, M. R. I.
    7TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING (ICTE), 2017, 1851
  • [48] Potential of biodiesel from waste cooking oil in Mexico
    Sheinbaum-Pardo, Claudia
    Calderon-Irazoque, Andrea
    Ramirez-Suarez, Mariana
    BIOMASS & BIOENERGY, 2013, 56 : 230 - 238
  • [49] Overview of the production of biodiesel from Waste cooking oil
    Yaakob, Zahira
    Mohammad, Masita
    Alherbawi, Mohammad
    Alam, Zahangir
    Sopian, Kamaruzaman
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 : 184 - 193
  • [50] Study on the Decolorization of Biodiesel from Waste Cooking Oil
    Liu Guangrui
    Chen Guanyi
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 3781 - 3787