Mini-batch descent in semiflows

被引:0
|
作者
Corella, Alberto Dominguez
Hernandez, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dynam Control Machine Learning & Numer, D-91058 Erlangen, Germany
关键词
Gradient flow; mini-batch; stochastic gradient descent; domain decomposition; OBSTACLE; OPTIMIZATION;
D O I
10.1051/cocv/2025018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the application of mini-batch gradient descent to semiflows (gradient flows). Given a loss function (potential), we introduce a continuous version of mini-batch gradient descent by randomly selecting sub-loss functions over time, defining a piecewise flow. We prove that, under suitable assumptions on the potential generating the semiflow, the mini-batch descent flow trajectory closely approximates the original semiflow trajectory on average. In addition, we study a randomized minimizing movement scheme that also approximates the semiflow of the full loss function. We illustrate the versatility of this approach across various problems, including constrained optimization, sparse inversion, and domain decomposition. Finally, we validate our results with several numerical examples.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent
    Li, Fengan
    Chen, Lingjiao
    Zeng, Yijing
    Kumar, Arun
    Wu, Xi
    Naughton, Jeffrey F.
    Patel, Jignesh M.
    SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 1517 - 1534
  • [22] Mini-batch algorithms with online step size
    Yang, Zhuang
    Wang, Cheng
    Zhang, Zhemin
    Li, Jonathan
    KNOWLEDGE-BASED SYSTEMS, 2019, 165 : 228 - 240
  • [23] Mini-Batch VLAD for Visual Place Retrieval
    Aljuaidi, Reem
    Su, Jing
    Dahyot, Rozenn
    2019 30TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2019,
  • [24] Efficient Mini-batch Training for Stochastic Optimization
    Li, Muu
    Zhang, Tong
    Chen, Yuqiang
    Smola, Alexander J.
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 661 - 670
  • [25] MegDet: A Large Mini-Batch Object Detector
    Peng, Chao
    Xiao, Tete
    Li, Zeming
    Jiang, Yuning
    Zhang, Xiangyu
    Jia, Kai
    Yu, Gang
    Sun, Jian
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6181 - 6189
  • [26] Nested Mini-Batch K-Means
    Newling, James
    Fleuret, Francois
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [27] Optimal Mini-Batch and Step Sizes for SAGA
    Gazagnadou, Nidham
    Gower, Robert M.
    Salmon, Joseph
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [28] Determinantal Point Processes for Mini-Batch Diversification
    Zhang, Cheng
    Kjellstrom, Hedvig
    Mandt, Stephan
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [29] A novel lab-scale batch foaming equipment: The mini-batch
    Tammaro, D.
    Contaldi, V.
    Carbone, M. G. Pastore
    Di Maio, E.
    Iannace, S.
    JOURNAL OF CELLULAR PLASTICS, 2016, 52 (05) : 533 - 543
  • [30] Gaussian Process Parameter Estimation Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
    Chen, Hao
    Zheng, Lili
    Kontar, Raed Al
    Raskutti, Garvesh
    Journal of Machine Learning Research, 2022, 23