Automated White Matter Fiber Tract Segmentation for the Brainstem

被引:0
|
作者
Li, Mingchu [1 ]
Zeng, Qingrun [2 ,3 ]
Zhang, Jiawei [2 ,3 ]
Huang, Ying [4 ]
Wang, Xu [1 ]
Ribas, Eduardo Carvalhal [5 ]
Wu, Xiaolong [1 ]
Liu, Xiaohai [1 ]
Liang, Jiantao [1 ]
Chen, Ge [1 ]
Feng, Yuanjing [2 ,3 ]
Li, Mengjun [6 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China
[2] Zhejiang Univ Technol, Acad Adv Interdisciplinary Sci & Technol, Hangzhou, Peoples R China
[3] Zhejiang Univ Technol, Inst Informat Proc & Automat, Coll Informat Engn, Hangzhou, Peoples R China
[4] Shenzhen SAMII Med Ctr, Dept Neurosurg, Shenzhen, Guangdong, Peoples R China
[5] Univ Sao Paulo, Hosp Clin, Div Neurosurg, Med Sch, Sao Paulo, Brazil
[6] Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
automatic segmentation; brainstem; fiber tracts; tractography; SAFE ENTRY ZONES; DIFFUSION MRI; MICROSURGICAL ANATOMY; PROBABILISTIC ATLAS; TRACTOGRAPHY; CONNECTIVITY; SURGERY; PATTERNS;
D O I
10.1002/nbm.5312
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas. A total of 100 fiber clusters were identified and annotated. Cortical parcellation-based fiber selection was then performed to extract fibers within the annotated clusters that projected to their corresponding cortical regions. This atlas was applied for automatic brainstem fiber bundle segmentation in 10 HCP subjects and 8 patients with brainstem cavernous malformations. The spatial overlap between automatic and manual reconstruction was assessed. Ultimately, eight fiber bundles were identified in the brainstem atlas on the basis of their trajectories: the corticospinal tract (CST), corticobulbar tract, frontopontine tract, parieto-occipital-pontine tract, medial lemniscus, and superior, middle, and inferior cerebellar peduncles. The mean and standard deviation of the weighted dice (wDice) scores between the automatic and manual reconstructions were 0.9076 +/- 0.0950 for the affected CST, 0.9388 +/- 0.0439 for the contralateral CST, 0.9130 +/- 0.0588 for the affected medial lemniscus, and 0.9600 +/- 0.0243 for the contralateral medial lemniscus. This proposed method effectively distinguishes major brainstem fiber bundles across subjects while reducing labor costs and interoperator variability inherent to manual reconstruction. Additionally, this method is robust in that it allows for the visualization and identification of fiber tracts surrounding brainstem cavernous malformations.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] DeepACSON automated segmentation of white matter in 3D electron microscopy
    Abdollahzadeh, Ali
    Belevich, Ilya
    Jokitalo, Eija
    Sierra, Alejandra
    Tohka, Jussi
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [42] Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset
    Heinen, Rutger
    Steenwijk, Martijn D.
    Barkhof, Frederik
    Biesbroek, J. Matthijs
    van der Flier, Wiesje M.
    Kuijf, Hugo J.
    Prins, Niels D.
    Vrenken, Hugo
    Biessels, Geert Jan
    de Bresser, Jeroen
    van den Berg, E.
    Boomsma, J. M. F.
    Exalto, L. G.
    Ferro, D. A.
    Frijns, C. J. M.
    Groeneveld, O. N.
    van Kalsbeek, N. M.
    Verwer, J. H.
    de Bresser, J.
    Kuijf, H. J.
    Emmelot-Vonk, M. E.
    Koek, H. L.
    Benedictus, M. R.
    Bremer, J.
    Leeuwis, A. E.
    Leijenaar, J.
    Prins, N. D.
    Scheltens, P.
    Tijms, B. M.
    Wattjes, M. P.
    Teunissen, C. E.
    Koene, T.
    Boomsma, J. M. F.
    Weinstein, H. C.
    Hamaker, M.
    Faaij, R.
    Pleizier, M.
    Prins, M.
    Vriens, E.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Automated tissue segmentation of MR brain images in the presence of white matter lesions
    Valverde, Sergi
    Oliver, Arnau
    Roura, Eloy
    Gonzalez-Villa, Sandra
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 446 - 457
  • [44] Validation of Novel Automated Method for White Matter Lesion Segmentation in Multiple Sclerosis
    Feng, Jenny J.
    Nakamura, Kunio
    Thoomukuntla, Bhaskar
    Ontaneda, Daniel D.
    ANNALS OF NEUROLOGY, 2017, 82 : S191 - S192
  • [45] White Matter Hyperintensities and Poststroke Apathy: A Fully Automated MRI Segmentation Study
    Martins-Filho, Rui Kleber
    Rodrigues, Guilherme
    da Costa, Raul Ferreira
    Castro, Rodrigo de Souza
    Zotin, Maria Clara Zanon
    Camilo, Millene R.
    Pontes-Neto, Octavio M.
    CEREBROVASCULAR DISEASES, 2023, 52 (04) : 435 - 441
  • [46] Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset
    Rutger Heinen
    Martijn D. Steenwijk
    Frederik Barkhof
    J. Matthijs Biesbroek
    Wiesje M. van der Flier
    Hugo J. Kuijf
    Niels D. Prins
    Hugo Vrenken
    Geert Jan Biessels
    Jeroen de Bresser
    Scientific Reports, 9
  • [47] DeepACSON automated segmentation of white matter in 3D electron microscopy
    Ali Abdollahzadeh
    Ilya Belevich
    Eija Jokitalo
    Alejandra Sierra
    Jussi Tohka
    Communications Biology, 4
  • [48] Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm
    Kamali, Tahereh
    Stashuk, Daniel
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2016, 73 : 14 - 22
  • [49] Alterations in White Matter Fiber Tracts Characterized by Automated Fiber-Tract Quantification and Their Correlations With Cognitive Impairment in Neuromyelitis Optica Spectrum Disorder Patients
    Yan, Zichun
    Wang, Xiaohua
    Zhu, Qiyuan
    Shi, Zhuowei
    Chen, Xiaoya
    Han, Yongliang
    Zheng, Qiao
    Wei, Yiqiu
    Wang, Jingjie
    Li, Yongmei
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [50] Automated segmentation method of white matter and gray matter regions with multiple sclerosis lesions in MR images
    Magome T.
    Arimura H.
    Kakeda S.
    Yamamoto D.
    Kawata Y.
    Yamashita Y.
    Higashida Y.
    Toyofuku F.
    Ohki M.
    Korogi Y.
    Radiological Physics and Technology, 2011, 4 (1) : 61 - 72