No eigenvectors embedded in the singular continuous spectrum of Schrödinger operators

被引:0
|
作者
Ujino, Kota [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
关键词
D O I
10.1007/s13324-024-00948-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In general a Schr & ouml;dinger operator with a sparse potential has singular continuous spectrum, and some open interval is purely singular continuous spectrum. We give a sufficient condition so that the endpoint of the open interval is not an eigenvalue. An example of a Schr & ouml;dinger operator with a negative sparse potential on the half-line which has no nonnegative embedded eigenvalue for any boundary conditions is given.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Discreteness of spectrum conditions for Schrödinger operators on manifolds
    V. A. Kondrat’ev
    M. A. Shubin
    Functional Analysis and Its Applications, 1999, 33 : 231 - 232
  • [32] On absolute continuity of the spectrum of periodic Schrödinger operators
    Ihyeok Seo
    Monatshefte für Mathematik, 2016, 180 : 893 - 912
  • [33] New Estimates for the Bottom of the Spectrum of Schrödinger Operators
    Daniel Levin
    Annals of Global Analysis and Geometry, 2006, 29 : 313 - 322
  • [34] The Essential Spectrum of Schrödinger, Jacobi, and CMV Operators
    Yoram Last
    Barry Simon
    Journal d’Analyse Mathématique, 2006, 98 : 183 - 220
  • [35] On the spectrum of lattice Schrödinger operators with deterministic potential
    J. Bourgain
    Journal d'Analyse Mathématique, 2002, 87 : 37 - 75
  • [36] Essential Spectrum of Schrödinger Operators on Periodic Graphs
    V. S. Rabinovich
    Functional Analysis and Its Applications, 2018, 52 : 66 - 69
  • [37] Construction of QuasiPeriodic Schrödinger Operators with Cantor Spectrum
    Xuanji Hou
    Yuan Shan
    Jiangong You
    Annales Henri Poincaré, 2019, 20 : 3563 - 3601
  • [38] Spectrum and scattering for Schrödinger operators with unbounded coefficients
    Kh. Kh. Murtazin
    A. N. Galimov
    Doklady Mathematics, 2006, 73 : 223 - 225
  • [39] Discreteness of the spectrum of vectorial Schrödinger operators with δ-interactions
    Xiaoyun Liu
    Xiaojing Zhao
    Guoliang Shi
    Boundary Value Problems, 2016
  • [40] Measure Zero Spectrum of a Class of Schrödinger Operators
    Qing-Hui Liu
    Bo Tan
    Zhi-Xiong Wen
    Jun Wu
    Journal of Statistical Physics, 2002, 106 : 681 - 691