WELL-POSEDNESS AND STABILITY OF DOUBLEWALL CARBON NANOTUBES TIMOSHENKO SYSTEM UNDER LORD-SHULMAN THERMOELASTICITY

被引:0
|
作者
Apalara, Tijani A. [1 ]
Almutairi, Hassan A. [1 ]
机构
[1] Univ Hafr Al Batin UHB, Dept Math, Hafar al Batin 31991, Saudi Arabia
关键词
Key words and phrases. Carbon nanotubes; Timoshenko system; Lord-Shulman thermoelas- ticity; exponential stability; well-posedness; energy method; STABILIZATION; DECAY; MODEL; BEAM;
D O I
10.3934/dcdss.2025020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This article investigates the well-posedness and stability of doublewall carbon nanotubes modeled as a double-Timoshenko system with heat conduction of the Lord-Shulman type. The Hille-Yoside theorem is employed to substantiate the well-posedness result. The stability result of the system over time is established using the energy method. Our results reveal the existence of a unique solution that is exponentially stable irrespective of any assumptions on the coefficient of the system. Our coupling and results extend the previous results in the literature and provide a valuable contribution to the stability of carbon nanotubes governed by the Timoshenko system. The results will be of particular interest and value to engineers, materials scientists, and researchers working in the field of carbon nanotube-based problems.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] WELL-POSEDNESS AND EXPONENTIAL STABILITY FOR A LINEAR DAMPED TIMOSHENKO SYSTEM WITH SECOND SOUND AND INTERNAL DISTRIBUTED DELAY
    Apalara, Tijani A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [22] The Well-Posedness and Stability Analysis of a Computer Series System
    Qiao, Xing
    Ma, Dan
    Zheng, Fu
    Zhu, Guangtian
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [23] STABILITY RESULT AND WELL-POSEDNESS FOR TIMOSHENKO'S BEAM LAMINATED WITH THERMOELASTIC AND PAST HISTORY
    Choucha, A.
    Boulaaras, Salah
    Ouchenane, Djamel
    Alkhalaf, Salem
    Cherif, Bahri
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (05)
  • [24] Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory
    Guesmia, Aissa
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (01) : 300 - 350
  • [25] Well-posedness and exponential stability of Timoshenko system of second sound with time-varying delay and forcing terms
    Khaldi O.
    Rahmoune A.
    Ouchenane D.
    Yazid F.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (2) : 331 - 358
  • [26] Global well-posedness and polynomial decay for a nonlinear Timoshenko-Cattaneo system under minimal Sobolev regularity
    Mori, Naofumi
    Racke, Reinhard
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 173 : 164 - 179
  • [27] Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping
    Zennir, Khaled
    Ouchenane, Djamel
    Choucha, Abdelbaki
    Biomy, Mohamad
    AIMS MATHEMATICS, 2021, 6 (03): : 2704 - 2721
  • [28] Timoshenko systems with Cattaneo law and partial Kelvin-Voigt damping: well-posedness and stability
    Enyi, Cyril Dennis
    APPLICABLE ANALYSIS, 2023, 102 (18) : 4955 - 4971
  • [29] Well-Posedness and Stability for a System of Klein-Gordon Equations
    Latioui, Naaima
    Guesmia, Amar
    Ouaoua, Amar
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [30] Well-posedness and Stability of the Repairable System with Three Units and Vacation
    Xiaoshuang HAN
    Mingyan TENG
    Ming FANG
    Journal of Systems Science and Information, 2014, (01) : 54 - 76